§2.2. Линейная зависимость векторов

Перейдем к описанию свойств линейных пространств. В первую очередь к ним относятся отношения между его элементами.

Линейной комбинацией элементов над полем действительных чиселR называется элемент

Определение. Множество элементов ,называется линейно независимым, если из равенства

с необходимостью следует, что ,. Ясно, что любая часть элементов изтакже линейно независимая. Если хотя бы одно из,, то множествоназывается линейно зависимым.

Пример III .6. Пусть дано векторное множество . Если один из векторов, например,, то такая система векторов линейно зависима. В самом деле, пусть множество,, …,,, …,линейно независимо, тогда из равенстваследует, что.

Добавляя к этому множеству вектор, умноженный на, по-прежнему имеем равенство

Следовательно, множество векторов, как, впрочем, и любых других элементов, содержащих нулевой элемент, всегда линейно зависимо ▼.

Замечание. Если множество векторов пусто, то оно линейно независимо. В самом деле, если нет никаких индексов, то невозможно выбрать им соответствующие не равные нулю числа, чтобы сумма вида (III.2) была равна 0. Такая интерпретация линейной независимости может быть принята за доказательство, тем более что такой результат хорошо согласуется с теорией 11.

В связи со сказанным определение линейной независимости можно сформулировать так: множество элементов линейно независимо, еслии нет ни одного индекса, для которого. В частности, это множество может быть и пустым.

Пример III .7. Любые два скользящих вектора линейно зависимы. Напомним, что скользящими векторами называются векторы, лежащие на одной прямой. Взяв единичный вектор , можно получить любой другой вектор умножением на соответствующее действительное число, то естьили. Следовательно, уже любые два вектора в одномерном пространстве линейно зависимы.

Пример III .8. Рассмотрим пространство полиномов, где ,,,. Запишем

Полагая ,,, получим, тождественно поt

то есть множество линейно зависимо. Заметим, что любое конечное множество вида,линейно независимо. Для доказательства рассмотрим случай, тогда из равенства

в случае предположения о его линейной зависимости, следовало бы, что существуют не все равные нулю числа 1 , 2 , 3 , что тождественно для любого выполняется (III.3), но это противоречит основной теореме алгебры: любой многочлен n -ой степени имеет не более чем n действительных корней. В нашем случае это уравнение имеет только два корня, а не бесконечное их множество. Получили противоречие.

§ 2. Линейные комбинации. Базисы

Пусть . Будем говорить, чтоестьлинейная комбинация элементов .

Теорема III .1 (основная). Множество ненулевых элементов линейно зависимо тогда и только тогда, когда некоторый элемент,является линейной комбинацией предшествующих элементов.

Доказательство . Необходимость . Предположим, что элементы ,, …,линейно зависимы и пустьпервое натуральное число, для которого элементы,, …,линейно зависимы, тогда

при не всех равных нулю и обязательно(иначе этим коэффициентом было бы, что противоречило бы заявленному). Отсюда имеем линейную комбинацию

Достаточность очевидна, поскольку, каждое множество, содержащее линейно зависимое множество, само линейно зависимо ▼.

Определение. Базисом (координатной системой) линейного пространства L называется множество A линейно независимых элементов, такое, что каждый элемент из L является линейной комбинацией элементов из A , 11.

Мы будем рассматривать конечномерные линейные пространства ,.

Пример III .9. Рассмотрим трехмерное векторное пространство . Возьмем единичные векторы,,. Они образуют базис при.

Покажем, что векторы линейно независимы. В самом деле, имеем

или . Отсюда по правилам умножения вектора на число и сложения векторов (примерIII.2) получим

Следовательно, ,,▼.

Пусть – произвольный вектор пространства, тогда исходя из аксиом линейного пространства получаем

Аналогичные рассуждения справедливы для пространства с базисом, . Из основной теоремы следует, что в произвольном конечномерном линейном пространствеL любой элемент может быть представлен как линейная комбинация его базисных элементов,, …,, то есть

Причем такое разложение единственно. В самом деле, пусть имеем

тогда после вычитания получаем

Отсюда, в силу независимости элементов ,,

То есть ▼.

Теорема III .2 (о дополнении до базиса). Пусть – конечномерное линейное пространство и– некоторое множество линейно независимых элементов. Если они не образуют базис, то вможно найти такие элементы,, …,, что множество элементовобразуют базис в. То есть, каждое линейно независимое множество элементов линейного пространства может быть дополнено до базиса.

Доказательство . Поскольку пространство – конечномерное, то у него есть базис, состоящий, например, изn элементов, пусть это элементы . Рассмотрим множество элементов.

Применим основную теорему. В порядке следования элементов рассмотрим множество A . Оно заведомо линейно зависимое, поскольку любой из элементов есть линейная комбинация,,. Так как элементы,, …,– линейно независимые, то добавляя к нему последовательно элементыдо тех пор, пока не появится первый элемент, например,, такой, что он будет линейной комбинацией предыдущих векторов этого множества, то есть. Выбрасывая этот элемент из множестваA , получим . Продолжаем эту процедуру до тех пор, пока в этом множестве не останетсяn линейно независимых элементов, среди которых все элементы ,, …,иn -m из элементов . Полученное множество и будет базисом ▼.

Пример III .10. Доказать, что векторы ,,иобразуют линейно зависимое множество, а любые три из них линейно независимы.

Покажем, что существуют не все равные нулю числа , для которых

В самом деле, при ,имеем

Линейная зависимость доказана. Покажем, что тройка векторов, например ,,, образует базис. Составим равенство

Выполняя действия с векторами, получим

Приравнивая соответствующие координаты в правой и левой частях последнего равенства, получим систему уравнений ,,, решая ее, получим.

Аналогичное рассуждение справедливо и для оставшихся троек векторов ,,или,,.

Теорема III .3 (о размерности пространства). Все базисы конечномерного линейного пространства L состоят из одинакового числа базисных элементов.

Доказательство . Пусть даны два множества , где;,. Каждому из них припишем одно из двух свойств, определяющих базис: 1) через элементы множестваA линейно выражаются любые элементы из L , 2) элементы множества B представляют линейно независимую совокупность, но не обязательно всю из L . Будем считать, что элементы A и B упорядочены.

Рассмотрим множество A и применим к его элементам m раз метод из основной теоремы. Так как элементы из B линейно независимы, то получим, по-прежнему, линейно зависимое множество

В самом деле, если бы , то получилось бы линейно независимое множество, а оставшиесяn элементов множества B линейно выражались бы через них, что невозможно, значит . Но этого тоже быть не может, так как по построению множество (III.4) обладает свойством базиса множества A . Поскольку пространство L конечномерное, то остается только , то есть два разных базиса пространстваL состоят из одинакового числа элементов ▼.

Следствие. В любом n -мерном линейном пространстве () можно найти бесконечно много базисов.

Доказательство следует из правила умножения элементов линейного (векторного) пространства на число.

Определение. Размерностью линейного пространства L называется число элементов, составляющих его базис.

Из определения следует, что пустое множество элементов – тривиальное линейное пространство – имеет размерность 0, что, как следует заметить, оправдывает терминологию линейной зависимости и позволяет заявить: n -мерное пространство имеет размерностьn , .

Таким образом, подводя итоги сказанному, получаем, что каждое множество из n +1 элемента n -мерного линейного пространства линейно зависимо; множество из n элементов линейного пространства является базисом тогда и только тогда, когда оно линейно независимое (или каждый элемент пространства является линейной комбинацией элементов его базиса); в любом линейном пространстве число базисов бесконечно.

Пример III .11 (теорема Кронекера – Капелли).

Пусть имеем систему линейных алгебраических уравнений

где A – матрица коэффициентов системы,  расширенная матрица коэффициентов системы

Где , (III.6)

эта запись эквивалентна системе уравнений (III.5).

Теорема III .4 (Кронекера – Капелли). Система линейных алгебраических уравнений (III.5) совместна тогда и только тогда, когда ранг матрицы A равен рангу матрицы , то есть.

Доказательство . Необходимость . Пусть система (III.5) совместна, тогда у нее существует решение: ,,. Учитывая (III.6), , но в этом случаеесть линейная комбинация векторов,, …,. Следовательно, через множество векторов,,, …,можно выразить любой вектор из. Это означает, что.

Достаточность . Пусть . Выберем любой базис из,, …,, тогдалинейно выражается через базис (это могут быть как все векторы, так и их часть) и тем самым, через все векторы,. Это означает, что система уравнений совместна ▼.

Рассмотрим n -мерное линейное пространство L . Каждый вектор можно представить линейной комбинацией , где множество,состоит из базисных векторов. Перепишем линейную комбинацию в видеи установим взаимнооднозначное соответствие между элементами и их координатами

Это означает, что между n -мерным линейным векторным пространством векторов надn -мерным полем действительных чисел установлено взаимно-однозначное соответствие.

Определение. Два линейных пространства инад одним и тем же скалярным полемизоморфны , если между их элементами можно установить взаимнооднозначное соответствие f , так чтобы

то есть под изоморфизмом понимается взаимнооднозначное соответствие, сохраняющее все линейные отношения. Ясно, что изоморфные пространства имеют одинаковую размерность.

Из примера и определения изоморфизма следует, что с точки зрения изучения проблем линейности изоморфные пространства одинаковы, поэтому формально вместо n -мерного линейного пространства L над полем можно изучать только поле.

Задача 1. Выяснить, является ли система векторов линейно независимой. Систему векторов будем задавать матрицей системы, столбцы которой состоят из координат векторов.

Решение. Пусть линейная комбинация равна нулю. Записав это равенство в координатах, получим следующую систему уравнений:

Такая система уравнений называется треугольной. Она имеет единственное решение . Следовательно, векторы линейно независимы.

Задача 2. Выяснить, является ли линейно независимой система векторов.

Решение. Векторы линейно независимы (см. задачу 1). Докажем, что вектор является линейной комбинацией векторов . Коэффициенты разложения по векторам определяются из системы уравнений

Эта система, как треугольная, имеет единственное решение.

Следовательно, система векторов линейно зависима.

Замечание . Матрицы, такого вида, как в задаче 1, называются треугольными , а в задаче 2 – ступенчато-треугольными . Вопрос о линейной зависимости системы векторов легко решается, если матрица, составленная из координат этих векторов, является ступенчато треугольной. Если матрица не имеет специального вида, то с помощью элементарных преобразований строк , сохраняющих линейные соотношения между столбцами, её можно привести к ступенчато-треугольному виду.

Элементарными преобразованиями строк матрицы(ЭПС) называются следующие операции над матрицей:

1) перестановка строк;

2) умножение строки на отличное от нуля число;

3) прибавление к строке другой строки, умноженной на произвольное число.

Задача 3. Найти максимальную линейно независимую подсистему и вычислить ранг системы векторов

Решение. Приведем матрицу системы с помощью ЭПС к ступенчато-треугольному виду. Чтобы объяснить порядок действий, строчку с номером преобразуемой матрицы обозначим символом . В столбце после стрелки указаны действия над строками преобразуемой матрицы, которые надо выполнить для получения строк новой матрицы.

Очевидно, что первые два столбца полученной матрицы линейно независимы, третий столбец является их линейной комбинацией, а четвертый не зависит от двух первых. Векторы называются базисными. Они образуют максимальную линейно независимую подсистему системы , а ранг системы равен трем.



Базис, координаты

Задача 4. Найти базис и координаты векторов в этом базисе на множестве геометрических векторов, координаты которых удовлетворяют условию .

Решение . Множество является плоскостью, проходящей через начало координат. Произвольный базис на плоскости состоит из двух неколлинеарных векторов. Координаты векторов в выбранном базисе определяются решением соответствующей системы линейных уравнений.

Существует и другой способ решения этой задачи, когда найти базис можно по координатам.

Координаты пространства не являются координатами на плоскости , так как они связаны соотношением , то есть не являются независимыми. Независимые переменные и (они называются свободными) однозначно определяют вектор на плоскости и, следовательно, они могут быть выбраны координатами в . Тогда базис состоит из векторов, лежащих в и соответствующих наборам свободных переменных и , то есть .

Задача 5. Найти базис и координаты векторов в этом базисе на множестве всех векторов пространства , у которых нечетные координаты равны между собой.

Решение . Выберем, как и в предыдущей задаче, координаты в пространстве .

Так как , то свободные переменные однозначно определяют вектор из и, следовательно, являются координатами. Соответствующий базис состоит из векторов .

Задача 6. Найти базис и координаты векторов в этом базисе на множестве всех матриц вида , где – произвольные числа.

Решение . Каждая матрица из однозначно представима в виде:

Это соотношение является разложением вектора из по базису с координатами .

Задача 7. Найти размерность и базис линейной оболочки системы векторов

Решение. Преобразуем с помощью ЭПС матрицу из координат векторов системы к ступенчато-треугольному виду.

Столбцы последней матрицы линейно независимы, а столбцы линейно выражаются через них. Следовательно, векторы образуют базис , и .

Замечание . Базис в выбирается неоднозначно. Например, векторы также образуют базис .

Задача. Пионерский отряд отправился из города в поход. Сейчас он находится в

5 км от города и идёт со скоростью 3 км в час. На каком расстоянии от города он будет через х часов?

Решение. За х часов отряд пройдет километров, Да ещё ранее он прошёл 5 км. Значит, через х часов расстояние от города будет равно километрам. Обозначив это расстояние через у, будем иметь;

Это равенство выражает зависимость пути от времени, но это уже не будет прямо пропорциональная зависимость, как легко видеть из следующей таблицы

Отношение пути ко времени здесь не равно одному и тому же числу.

Определение. Зависимость между двумя величинами х и у, выражающаяся формулой где к и - числа, называется линейной зависимостью.

В частности, если то

Значит, прямо пропорциональная зависимость является частным случаем линейной зависимости.

2. График линейной зависимости.

Построим график какой-либо данной линейной зависимости; положим, например,

Поступим следующим образом. Построим сначала график зависимости

Это будет прямая, проходящая через начало координат (черт. 26).

Посмотрим, как будут расположены относительно этой прямой точки графика линейной зависимости:

Составим, например, такую таблицу значений х и у:

Мы видим, что при любой абсциссе ордината точки второго графика на 3 единицы больше ординаты точки первого графика. Значит, и соответствующая точка второго графика будет на 3 единицы выше точки первого.

Построив эти точки, получим прямую, параллельную первой прямой (черт. 26).

Графиком линейной зависимости является прямая.

Отсюда следует, что для построения графика линейной зависимости достаточно найти две его точки.

Покажем это на рассмотренном примере

Положив получим . Итак, одну точку мы нашли. Положив ещё получим Вторая точка (2; 7). Построив эти точки и проведя через них прямую, получим искомый график, то есть график линейной зависимости, выраженной формулой

Обычно для построения графика линейной зависимости берут две точки, в которых прямая пересекает оси координат. Так, полагая получим Полагая получим Проведя прямую через точки получим искомый график (черт. 27).

Линейная зависимость и независимость векторов

Определения линейно зависимой и независимой систем векторов

Определение 22

Пусть имеем систему из n-векторови имеем набор чисел , тогда

(11)

называется линейной комбинацией данной системы векторов с данным набором коэффициентов.

Определение 23

Система векторовназываетсялинейно зависимой, если существует такой набор коэффициентов, из которых хотя бы один не равен нулю, что линейная комбинация данной системы векторов с этим набором коэффициентов равна нулевому вектору:

Пусть , тогда

Определение 24 (через представление одного вектора системы в виде линейной комбинации остальных)

Система векторов называетсялинейно зависимой, если хотя бы один из векторов этой системы можно представить в виде линейной комбинации остальных векторов этой системы.

Утверждение 3

Определения 23 и 24 эквивалентны.

Определение 25 (через нулевую линейную комбинацию)

Система векторов называетсялинейно независимой, если нулевая линейная комбинация этой системы возможна лишь при всехравных нулю.

Определение 26 (через невозможность представления одного вектора системы в виде линейной комбинации остальных)

Система векторов называетсялинейно независимой, если не один из векторов этой системы нельзя представить в виде линейной комбинации других векторов этой системы.

Свойства линейно зависимой и независимой систем векторов

Теорема 2 (нулевой вектор в системе векторов)

Если в системе векторов имеется нулевой вектор, то система линейно зависима.

Пусть, тогда.

Получим , следовательно, по определению линейно зависимой системы векторов через нулевую линейную комбинацию(12) система линейно зависима.

Теорема 3 (зависимая подсистема в системе векторов)

Если в системе векторов имеется линейно зависимая подсистема, то и вся система линейно зависима.

 Пусть- линейно зависимая подсистема, среди которых хотя бы одно не равно нулю:

Значит, по определению 23, система линейно зависима. 

Теорема 4

Любая подсистема линейно независимой системы линейно независима.

 От противного. Пусть система линейно независима и в ней имеется линейно зависимая подсистема. Но тогда по теореме 3 вся система будет также линейно зависимой. Противоречие. Следовательно, подсистема линейно независимой системы не может быть линейно зависимой.

Геометрический смысл линейной зависимости и независимости системы векторов

Теорема 5

Два вектора илинейно зависимы тогда и только тогда, когда.

Необходимость.

и- линейно зависимы, что выполняется условие. Тогда, т.е..

Достаточность.

линейно зависимы. 

Следствие 5.1

Нулевой вектор коллинеарен любому вектору

Следствие 5.2

Для того чтобы два вектора были линейно независимы необходимо и достаточно, чтобы был не коллинеарен .

Теорема 6

Для того чтобы система из трёх векторов была линейно зависима необходимо и достаточно, чтобы эти векторы были компланарными.

Необходимость.

Линейно зависимы, следовательно, один вектор можно представить в виде линейной комбинации двух других.

где и. По правилу параллелограммаесть диагональ параллелограмма со сторонами, но параллелограмм – плоская фигуракомпланарны- тоже компланарны.

Достаточность .

Компланарны. Приложим три вектора к точке О:

– линейно зависимы

Следствие 6.1

Нулевой вектор компланарен любой паре векторов.

Следствие 6.2

Для того чтобы векторы были линейно независимы необходимо и достаточно, чтобы они были не компланарны.

Следствие 6.3

Любой вектор плоскости можно представить в виде линейной комбинации любых двух неколлинеарных векторов этой же плоскости.

Теорема 7

Любые четыре вектора в пространстве линейно зависимы.

 Рассмотрим 4 случая:

Проведем плоскость через векторы , затем плоскость через векторы и плоскость через векторы . Затем проведем плоскости, проходящие через точкуD, параллельные парам векторов ; ; соответственно. По линиям пересечения плоскостей строим параллелепипедOB 1 D 1 C 1 ABDC .

Рассмотрим OB 1 D 1 C 1 – параллелограмм по построению по правилу параллелограмма.

Рассмотрим OADD 1 – параллелограмм (из свойства параллелепипеда), тогда

EMBED Equation.3 .

По теореме 1 такие, что. Тогда, и по определению 24 система векторов линейно зависимая. 

Следствие 7.1

Суммой трёх некомпланарных векторов в пространстве является вектор, совпадающий с диагональю параллелепипеда, построенного на этих трёх векторах, приложенных к общему началу, причём начало вектора суммы совпадает с общим началом этих трёх векторов.

Следствие 7.2

Если в пространстве взять 3 некомпланарных вектора, то любой вектор этого пространства можно разложить в линейную комбинацию данных трёх векторов.

Векторы, их свойства и действия с ними

Векторы, действия с векторами, линейное векторное пространство.

Векторы- упорядоченная совокупность конечного количества действительных чисел.

Действия: 1.Умножение вектора на число: лямда*вектор х=(лямда*х 1 , лямда*х 2 … лямда*х n).(3,4, 0, 7)*3=(9, 12,0,21)

2.Сложение векторов (принадлежат одному и тому же векторному пространству) вектор х+вектор у = (х 1 +у 1, х 2 +у 2, … х n +у n ,)

3. Вектор 0=(0,0…0)---n E n – n-мерное (линейное пространство) вектор х +вектор 0 = вектор х

Теорема. Для того чтобы система n векторов, n- мерного линейного пространства была линейно зависимой, необходимо и достаточно, чтобы один из векторов были линейной комбинацией остальным.

Теорема. Любая совокупность n+ 1ого вектора n- мерного линейного пространства явл. линейно зависимой.

Сложение векторов, умножение векторов на числа. Вычитание векторов.

Суммой двух векторов и называется вектор, направленный из начала вектора в конец вектора при условии, что начало совпадет с концом вектора. Если векторы заданы их разложениями по базисным ортам, то при сложении векторов складываются их соответствующие координаты.

Рассмотрим это на примере декартовой системы координат. Пусть

Покажем, что

Из рисунка 3 видно, что

Сумма любого конечного числа векторов может быть найдена по правилу многоугольника (рис. 4): чтобы построить сумму конечного числа векторов, достаточно совместить начало каждого последующего вектора с концом предыдущего и построить вектор, соединяющий начало первого вектора с концом последнего.

Свойства операции сложения векторов:

В этих выражениях m, n - числа.

Разностью векторов и называют вектор Второе слагаемое является вектором, противоположным вектору по направлению, но равным ему по длине.

Таким образом, операция вычитания векторов заменяется на операцию сложения

Вектор, начало которого находится в начале координат, а конец - в точке А (x1, y1, z1), называют радиус-вектором точки А и обозначают или просто. Так как его координаты совпадают с координатами точки А, то его разложение по ортам имеет вид

Вектор, имеющий начало в точке А(x1, y1, z1) и конец в точке B(x2, y2, z2), может быть записан в виде

где r 2 - радиус-вектор точки В; r 1 - радиус-вектор точки А.

Поэтому разложение вектора по ортам имеет вид

Его длина равна расстоянию между точками А и В

УМНОЖЕНИЕ

Так в случае плоской задачи произведение вектор на a = {ax; ay} на число b находится по формуле

a · b = {ax · b; ay · b}

Пример 1. Найти произведение вектора a = {1; 2} на 3.

3 · a = {3 · 1; 3 · 2} = {3; 6}

Так в случае пространственной задачи произведение вектора a = {ax; ay; az} на число b находится по формуле

a · b = {ax · b; ay · b; az · b}

Пример 1. Найти произведение вектора a = {1; 2; -5} на 2.

2 · a = {2 · 1; 2 · 2; 2 · (-5)} = {2; 4; -10}

Скалярное произведение векторов и где - угол между векторами и ; если либо , то

Из определения скалярного произведения следует, что

где, например, есть величина проекции вектора на направление вектора .

Скалярный квадрат вектора:

Свойства скалярного произведения:

Скалярное произведение в координатах

Угол между векторами

Угол между векторами - угол между направлениями этих векторов (наименьший угол).

Векторное произведение(Векторное произведение двух векторов.)- это псевдовектор, перпендикулярный плоскости, построенной по двум сомножителям, являющийся результатом бинарной операции «векторное умножение» над векторами в трёхмерном Евклидовом пространстве. Произведение не является ни коммутативным, ни ассоциативным (оно является антикоммутативным) и отличается от скалярного произведения векторов. Во многих задачах инженерии и физики нужно иметь возможность строить вектор, перпендикулярный двум имеющимся - векторное произведение предоставляет эту возможность. Векторное произведение полезно для «измерения» перпендикулярности векторов - длина векторного произведения двух векторов равна произведению их длин, если они перпендикулярны, и уменьшается до нуля, если векторы параллельны либо антипараллельны.

Векторное произведение определено только в трёхмерном и семимерном пространствах. Результат векторного произведения, как и скалярного, зависит от метрики Евклидова пространства.

В отличие от формулы для вычисления по координатам векторов скалярного произведения в трёхмерной прямоугольной системе координат, формула для векторного произведения зависит от ориентации прямоугольной системы координат или, иначе, её «хиральности»

Коллинеарность векторов.

Два ненулевых (не равных 0) вектора называются коллинеа́рными, если они лежат на параллельных прямых или на одной прямой. Допусти́м, но не рекомендуется синоним - «параллельные» векторы. Коллинеарные векторы могут быть одинаково направлены («сонаправлены») или противоположно направлены (в последнем случае их иногда называют «антиколлинеарными» или «антипараллельными»).

Сме́шанное произведе́ние векторов(a, b,c) - скалярное произведение вектора a на векторное произведение векторов b и c:

(a,b,c)=a ⋅(b ×c)

иногда его называют тройным скалярным произведением векторов, по всей видимости из-за того, что результатом является скаляр (точнее - псевдоскаляр).

Геометрический смысл: Модуль смешанного произведения численно равен объёму параллелепипеда, образованного векторами(a,b,c) .

Свойства

Смешанное произведение кососимметрично по отношению ко всем своим аргументам:т. е. перестановка любых двух сомножителей меняет знак произведения. Отсюда следует, чтоСмешанное произведение в правой декартовой системе координат (в ортонормированном базисе) равно определителю матрицы, составленной из векторов и:

Смешанное произведение в левой декартовой системе координат (в ортонормированном базисе) равно определителю матрицы, составленной из векторов и, взятому со знаком "минус":

В частности,

Если любые два вектора параллельны, то с любым третьим вектором они образуют смешанное произведение равное нулю.

Если три вектора линейно зависимы (т. е. компланарны, лежат в одной плоскости), то их смешанное произведение равно нулю.

Геометрический смысл - Смешанное произведение по абсолютному значению равно объёму параллелепипеда (см. рисунок), образованного векторами и; знак зависит от того, является ли эта тройка векторов правой или левой.

Компланарность векторов.

Три вектора (или большее число) называются компланарными, если они, будучи приведенными к общему началу, лежат в одной плоскости

Свойства компланарности

Если хотя бы один из трёх векторов - нулевой, то три вектора тоже считаются компланарными.

Тройка векторов, содержащая пару коллинеарных векторов, компланарна.

Смешанное произведение компланарных векторов. Это - критерий компланарности трёх векторов.

Компланарные векторы - линейно зависимы. Это - тоже критерий компланарности.

В 3-мерном пространстве 3 некомпланарных вектора образуют базис

Линейно зависимые и линейно независимые векторы.

Линейно зависимые и независимые системы векторов. Определение . Система векторов называется линейно зависимой , если существует хотя бы одна нетривиальная линейная комбинация этих векторов, равная нулевому вектору. В противном случае, т.е. если только тривиальная линейная комбинация данных векторов равна нулевому вектору, векторы называются линейно независимыми .

Теорема (критерий линейной зависимости) . Для того чтобы система век торов линейного пространства была линейно зависимой, необходимо и достаточно, чтобы, по крайней мере, один из этих векторов являлся линейной комбинацией остальных.

1) Если среди векторов имеется хотя бы один нулевой вектор, то вся система векторов линейно зависима.

В самом деле, если, например, , то, полагая , имеем нетривиальную линейную комбинацию .▲

2) Если среди векторов некоторые образуют линейно зависимую систему, то и вся система линейно зависима.

Действительно, пусть векторы , , линейно зависимы. Значит, существует нетривиальная линейная комбинация , равная нулевому вектору. Но тогда, полагая , получим также нетривиальную линейную комбинацию , равную нулевому вектору.

2. Базис и размерность. Определение . Система линейно независимых векторов векторного пространства называетсябазисом этого пространства, если любой вектор из может быть представлен в виде линейной комбинации векторов этой системы, т.е. для каждого вектора существуют вещественные числа такие, что имеет место равенство Это равенство называется разложением вектора по базису , а числа называютсякоординатами вектора относительно базиса (или в базисе ) .

Теорема (о единственности разложения по базису) . Каждый вектор пространства может быть разложен по базису единственным образом, т.е. координаты каждого вектора в базисе определяются однозначно.

Главное значение базиса заключается в том, что операции сложения векторов и умножения их на числа при задании базиса превращаются в соответствующие операции над числами – координатами этих векторов. А именно, справедлива следующая

Теорема . При сложении двух любых векторов линейного пространства их координаты (относительно любого базиса пространства) складываются; при умножении произвольного вектора на любое число все координаты этого вектора умножаются на .

Определение -мерным , если в нем существуют линейно независимых векторов, а любые векторов уже являются линейно зависимыми. При этом число называется размерностью пространства .

Размерность векторного пространства, состоящего из одного нулевого вектора, принимается равной нулю.

Размерность пространства обычно обозначают символом .

Определение . Векторное пространство называется бесконечномерным , если в нем существует любое число линейно независимых векторов. В этом случае пишут .

Выясним связь между понятиями базиса и размерности пространства.

Теорема . Если – векторное пространство размерности , то любые линейно независимых векторов этого пространства образуют его базис.

Теорема . Если векторное пространство имеет базис, состоящий из векторов, то .


Похожая информация.