Что такое фармакокинетика. Фармакокинетика и метаболизм лекарственных препаратов

  • Возрастные этапы изменения функций сенсорных, моторных и висцеральных систем. Сенсорные особенности организма
  • Выделите из перечисленного этапы статистического исследования.
  • Глава 1. Основные этапы становления и развития неврологии в Медико-хирургической (Военно-медицинской) академии.
  • Глава 13 Рациональное использование лекарственных препаратов. Этапы рациональной фармакотерапии
  • I. Всасывание (абсорбция) - процесс поступления лекарства из места его введения в системный кровоток при внутрисосудистом введении.

    Скорость всасывания зависит от:

    1. Лекарственной формы препарата.

    2. От степени растворимости в жирах или в воде.

    3. От дозы или концентрации.

    4. От пути введения.

    5. От интенсивности кровоснабжения органов и тканей.

    Скорость всасывания при per os применении зависит от:

    1. РН среды в различных отделах ЖКТ.

    2. Характера и объёма содержимого желудка.

    3. От микробной обсеменённости.

    4. Активности пищевых ферментов.

    5. Состояния моторики ЖКТ.

    6. Интервала между приемом лекарства и пищей.

    Процесс всасывания характеризуется следующими фармакокинетическими параметрами:

    1. Биодоступность (f) – относительное количество препарата, которое поступает из места введения в кровь (%).

    2. Константа скорости всасывания (К 01) – это параметр, который характеризует скорость поступления ЛС из места введения в кровь (ч -1 , мин -1).

    3. Период полуабсорбции (t ½ α) – время, необходимое для всасывания из места введения в кровь ½ введенной дозы (ч, мин).

    4. Время достижения максимальной концентрации (t max) – это время, за которое достигается максимальная концентрация в крови (ч, мин).

    Процессы всасывания у детей достигают состояния абсорбции лекарственного уровня взрослых лишь к трём годам жизни. До трех лет абсорбция лекарств снижена главным образом из-за недостатка обсемененности кишечника, а также из-за недостатка желчеобразования. У людей старше 55 лет также снижена всасывательная способность. Им нужно лекарства дозировать с учетом возрастных особенностей.

    II. Биотранспорт – после всасывания лекарств в кровь они вступают в обратное взаимодействие с т.н. транспортными белками, к которым относятся белки сыворотки крови.

    Подавляющее число лекарства (90%) вступает в обратимые взаимодействия с человеческим сывороточным альбумином. А также взаимодействует с глобулинами, липопротеидами, гликопротеидами. Концентрация связанной с белком фракции соответствует свободной, т.е.: [С связ ] = [С своб ].

    Фармакологической активностью обладает лишь свободная, несвязанная с белком фракция, а связанная является своего рода резервом препарата в крови.

    Связанная часть ЛС транспортным белком определяет:

    1. Силу фармакологического действия лекарства.

    2. Продолжительность его действия.

    Места связывания белка являются общими для многих веществ.

    Процесс обратимого взаимодействия лекарств с транспортными белками характеризуется следующими фармакокинетическими параметрами:

    1. К асс (ЛС + белок) – характеризует степень сродства или силу обратимого взаимодействия препарата с белком сыворотки крови (моль -1).

    2. N – показатель, который свидетельствует о количестве мест фиксации на молекуле белка для молекулы конкретного препарата.

    III. Распределение лекарств в организме.

    Как правило, лекарства в организме распределяются по органам и тканям неравномерно с учетом их тропности (сродства).

    На характер распределения лекарств в организме влияют следующие факторы:

    1. Степень растворимости в липидах.

    2. Интенсивность регионарного или местного кровоснабжения.

    3. Степень сродства к транспортным белкам.

    4. Состояние биологических барьеров (стенок капилляров, биомембран, гематоэнцефалических и плацентарных).

    Основными местами распределения ЛС в организме являются:

    1. Внеклеточная жидкость.

    2. Внутриклеточная жидкость.

    3. Жировая ткань.

    Параметры:

    1. Объем распределения (Vd) - степень захвата ЛС тканями из крови (л, мл).


    IV. Биотрансформация.

    Один из центральных этапов фармакокинетики и основной путь детоксикации (обезвреживания) ЛС в организме.

    В биотрансформации принимают участие:

    5. Плацента

    Биотрансформация осуществляется в 2 фазы.

    Реакции 1 фазы:

    Гидроксилирование, окислительно-восстановтиельные реакции, дезаминарование, дезалкилирование и т.д. В процессе реакций этой фазы происходит изменение структуры молекулы препарата так, что он становится более гидрофильным. Это обеспечивает более легкую экскрецию из организма с мочой.

    Реакции I фазы осуществляются с помощью ферментов эндоплазматического ретикулума (микросомальные или ферменты монооксигеназной системы, основным из которых является цитохром Р450). Лекарства могут как усиливать, так и уменьшать активность этого фермента. ЛС, прошедшие I фазу, структурно подготовлены к реакциям II фазы.

    В процессе реакций II фазы образуются коньюгаты или парные соединения препарата с одним из эндогенных веществ (например, с глюкуроновой кислотой, глутатионом, глицином). Образование коньюгатов происходит при каталитической активности одного из одноименных ферментов, например (препарат +глюкуроновая кислота – образуется при помощи глюкуронидтрансферазы). Образовавшиеся коньюгаты являются фармакологически неактивными веществами и легко выводятся из организма с одним из экскретов. Однако не вся введенная доза ЛС подвергается биотрансформации, часть её выводится в неизмененном виде.

    Дата добавления: 2014-11-24 | Просмотры: 2724 | Нарушение авторских прав


    | | | 4 |

    Понятия фармакокинетики Фармакокинетика– это раздел фармакологии (греч. pharmakon – лекарство и kinētikos – относящийся к движению), изучающий закономерности абсорбции, распределения, превращения (биотрансформации) и экскреции лекарственных веществ в организме человека и животных.

    Понятия фармакокинетики Абсорбция– всасывание лекарственного препарата. Введенное лекарство переходит из места введения (например, желудочно-кишечный тракт, мышца) в кровь, которая разносит его по организму и доставляет в различные ткани органов и систем. Скорость и полнота всасывания характеризуют биодоступность лекарства (параметр фармакокинетики, показывающий, какая часть лекарства достигла системного кровотока). Естественно, что при внутривенном и внутриартериальном введении лекарственное вещество попадает в кровоток сразу и полностью, и его биодоступность составляет 100%.

    Понятия фармакокинетики Механизмы, обеспечивающие абсорбцию лекарственных средств: - пассивная диффузия – Перенос лекарственных веществ осуществляется через липидную мембрану по градиенту концентрации (из области большей концентрации в область меньшей концентрации)(диакарб, тиопентал, аминазин, резерпин); - фильтрация - осуществляется через поры, имеющиеся между клетками эпидермиса слизистой оболочки ЖКТ, роговицы, эндотелия капилляров (крупные молекулы не проникают);

    Понятия фармакокинетики Механизмы, обеспечивающие абсорбцию лекарственных средств: - активный транспорт – это транспорт ЛС против градиента концентрации. Для этого вида транспорта необходимы энергетические затраты и наличие специфической системы переноса (йод в фолликулы щитовидной железы, цитостатик 5 -фторурацил); - пиноцитоз – транспорт ЛС путём выпячивания и «охватывания» биомембраной ЛС и перемещение его внутрь клетки (крупные молекулы -витамин B 12, комплексы железа).).

    Понятия фармакокинетики Распределение– проникновение лекарственного средства в различные органы, ткани и жидкости организма. От распределения лекарства в организме зависит скорость наступления фармакологического эффекта, его интенсивность и продолжительность. Для того чтобы начать действовать, лекарственное вещество должно сконцентрироваться в нужном месте в достаточном количестве и оставаться там длительное время. Легче всего преодолеваются стенки капилляров, самые сложнодоступные барьеры между кровью и тканями мозга – гематоэнцефалический барьер и между кровью матери и плода – плацентарный барьер.

    Понятия фармакокинетики На характер распределения влияют многие факторы, но наиболее важными являются: Растворимость ЛС в воде и липидах. Гидрофильные ЛС, имеющие малый молекулярный вес, легко проходят во внеклеточные области, но не могут проникнуть через мембраны клеток и (или) биологические барьеры. Липофильные ЛС легко проникают через биологические барьеры и обычно быстро распространяются по всему организму. Степень связывания ЛС с белками. Лекарственный препарат, попав в кровь, находится в ней в двух фракциях: свободной и связанной (ЛС, связанные с белком, не взаимодействуют с рецепторами, ферментами и не проникают через клеточные мембраны). Главным образом лекарства связываются с альбуминами. Уменьшение связанной фракции лекарства на 10– 20% приведет к увеличению свободной фракции на 50– 100%, что важно при использовании препаратов с малой широтой терапевтического диапазона.

    Понятия фармакокинетики Особенности регионарного кровотока. Естественно, что после попадания ЛС в систему циркуляторного русла оно, в первую очередь, достигает наиболее хорошо кровоснабжаемых органов (сердце, легкие, печень, почки). Наличие биологических барьеров, которые встречаются на пути распространения ЛС: плазматические мембраны, стенка капилляров (гистогематический барьер), ГЭБ, плацентарный барьер.

    ; Понятия фармакокинетики Распределение лекарственного средства в организме с учетом всех факторов, влияющих на этот процесс, характеризуется фармакокинетическим показателем - объемом распределения - Vd Это условный объем жидкости, необходимый для равномерного распределения в нем лекарственного средства, обнаруживаемого в терапевтической концентрации в плазме крови после однократного внутривенного введения, определяемый по формуле; Vd =D/Сo где Vd - объем распределения; D - введенная доза лекарственного вещества, С 0 - начальная концентрация в крови.

    ; Если для условного человека с массой тела 70 кг Vd = 3 л (объем плазмы крови), это означает, что вещество находится в плазме крови, не проникает в форменные элементы крови и не выходит за пределы кровеносного русла. Vd = 15 л означает, что вещество находится в плазме крови (3 л), в межклеточной жидкости (12 л) и не проникает в клетки тканей. Vd = 40 л (общее количество жидкости в организме) означает, что вещество распределено во внеклеточной и внутриклеточной жидкости.

    ; Vd = 400– 600– 1000 л означает, что вещество депонировано в периферических тканях и его концентрация в крови низкая. Например, для имипрамина Vd = 1600 л. В связи с этим концентрация имипрамина в крови очень низкая и при отравлении имипрамином гемодиализ не эффективен.

    Понятия фармакокинетики Для некоторых препаратов характерно также перераспределение. Эти лекарственные препараты, вначале накапливаясь в одной ткани, в последующем перемещаются в другой орган, являющийся мишенью для них. Например, средство для неингаляционного наркоза тиопентал натрия вследствие своей высокой липофильности накапливается в жировой ткани и лишь потом начинает проникать в ЦНС и оказывать свое наркотическое действие.

    Понятия фармакокинетики Биотрансформация- изменение химической структуры лекарственных веществ и их физикохимических свойств под действием ферментов организма. Цель биотрансформации – перевести вещество в более водорастворимое соединение (гидрофильное), которое легко вывести из организма (с мочой, потом или желчью). В большинстве случаев при этом образуется менее активные и менее токсичные соединения, чем исходные лекарства. Основные превращения лекарственных веществ (более 90%) происходят в клетках печени при участии специальных ферментных систем.

    Понятия фармакокинетики Существуют два основных пути метаболизма лекарственных веществ в печени: Реакции метаболизма 1 -й фазы - окисление, восстановление, гидролиз. Конъюгация (реакции метаболизма 2 -й фазы), при которой происходит присоединение к молекуле вещества остатков других молекул (серной кислот, алкильных радикалов), с образованием неактивного комплекса, легко выводимого из организма с мочой или калом.

    Понятия фармакокинетики Экскреция – выведение лекарств из организма после того, как они частично или полностью превращаются в водорастворимые метаболиты (некоторые препараты экскретируются в неизмененном виде); Экскреция лекарств кишечная – выведение лекарств сначала с желчью, а затем с калом. Экскреция лекарств легочная – выведение лекарств через легкие, преимущественно средств для ингаляционного наркоза. Экскреция лекарств почечная – основной путь экскреции лекарств; Экскреция лекарств с грудным молоком – выделение лекарств во время лактации с молоком (снотворные, анальгетики, фенилин, амиодорон, ацетилсалициловая кислота, соталол, этиловый спирт).

    Понятия фармакокинетики Способ выведения необходимо знать, чтобы правильно дозировать препарат или при, например, заболеваниях почек или печени, для правильного лечения отравлений. Кроме того, знание способа выведения может повысить эффективность терапии. Например, антимикробное средство уросульфан выводится в неизменном виде почками, поэтому его назначают при инфекциях мочевыводящих путей, антибиотик тетрациклин выводится желчью, поэтому именно его назначают при инфекциях желчевыводящих путей; при бронхитах назначают камфару, которая, выделяясь легкими, разжижает мокроту и облегчает ее отхаркивание.

    Понятия фармакокинетики Элиминация - это сумма всех процессов, связанных с метаболизмом и выведением лекарственного препарата, то есть прекращением его действия. Интенсивность выведения лекарств из организма может быть описана количественными параметрами, служащими немаловажным элементом в оценке эффективности препаратов. а) период полужизни (Т 1/2) – время, необходимое для снижения концентрации лекарственного средства в плазме крови в 2 раза. Период полужизни может варьировать в очень большом интервале времени, например, у пенициллина он 28 минут, а у витамина Д - 30 дней.

    б) общий клиренс лекарственного средства (Clt) – объем плазмы крови, очищаемый от лекарственного вещества за единицу времени (мл/мин.) за счет выведения почками, печенью и т. д. Общий клиренс равняется сумме почечного и печеночного клиренса; в) почечный клиренс (Clr) – выведение лекарства с мочой; г) внепочечный клиренс (Cler) – выведение лекарства иными путями (прежде всего с желчью).

    Фармакодинамика Фармакодинамика(греч. pharmakon – лекарство и dynamikos – сильный)раздел фармакологии, изучающий локализацию, механизм действия и фармакологические эффекты лекарственных веществ. Механизм действия – это способ взаимодействия лекарственных веществ с рецепторами клеток и тканей организма, при котором происходят биохимические и физиологические изменения течения патологического процесса. Изменения, вызываемые лекарственным веществом, обозначают как фармакологические эффекты данного вещества.

    Фармакодинамика Фармакодинамика(греч. pharmakon – лекарство и dynamikos – сильный)раздел фармакологии, изучающий локализацию, механизм действия и фармакологические эффекты лекарственных веществ. Изменения, вызываемые лекарственным веществом, обозначают как фармакологические эффекты данного вещества. Механизм действия – способы, которыми вещества вызывают фармакологические эффекты.

    Фармакодинамика Также фармакодинамика изучает: зависимость действия ЛС от различных условий; эффекты ЛС при повторном введении; комбинированное действие ЛС; несовместимость ЛС; побочные эффекты лекарственных веществ.

    К основным механизмам действия лекарственных веществ относят: Физический. Действие лекарственного вещества связано с его физическими свойствами. Например, уголь активированный специально обработан, в связи с чем обладает большой поверхностной активностью. Это позволяет ему абсорбировать газы, алкалоиды, токсины и др. Механизм прямого химического взаимодействия. Это достаточно редкий механизм действия ЛС, суть которого заключается в том, что ЛС непосредственно взаимодействует с молекулами или ионами в организме. Таким механизмом действия обладает, например, препарат унитиол, относящийся к группе антидотов. В случае отравления тиоловыми ядами, в том числе солями тяжелых металлов, унитиол вступает с ними в прямую химическую реакцию, в результате чего образуются нетоксичные комплексы, которые выводятся из организма с мочой.

    Мембранный (физико-химический). Связан с влиянием ЛС на токи ионов (Na+, K+, Cl ־ и др.), определяющих трансмембранный электрический потенциал. По такому механизму действуют средства для наркоза, антиаритмические препараты, местные анестетики и др. Ферментативный (биохимический). Этот механизм определяется способностью некоторых ЛС оказывать активирующее или угнетающее влияние на ферменты. Арсенал ЛС с таким механизмом действия весьма широк. Например, антихолинэстеразные препараты, ингибиторы моноаминооксидазы, блокаторы протонной помпы и др.

    Рецепторный механизм. В организме человека существуют высокоспецифичные биологически активные вещества (медиаторы), которые взаимодействуют с рецепторами и изменяют функции тех или иных органов или тканей организма. Рецепторы - это макромолекулярные структуры, обладающие избирательной чувствительностью к определенным химическим соединениям. При взаимодействии ЛС с рецепторами происходят биохимические и физиологические изменения в организме, сопровождающиеся тем или иным клиническим эффектом.

    Препараты, прямо возбуждающие или повышающие функциональную активность рецепторов, называют агонистами, а вещества, препятствующие действию специфических агонистов, – антагонистами.

    Виды действия лекарственных веществ Главное и побочное действия. Под главным понимают основное, желательное действие лекарства, на которое рассчитывает врач. Побочное действие является, как правило, нежелательным, вызывающим осложнения. Например, главным для морфина является обезболивающее действие, а его способность вызывать эйфорию и наркоманию расценивается как существенный недостаток. Побочное действие может носить положительный характер. Например, кофеин оказывает стимулирующее действие на центральную нервную систему, а также усиливает работу сердца. Побочное действие может носить и нежелательный (отрицательный) характер. Некоторые слабительные средства при своем действии вызывают боли в кишечнике.

    Виды действия лекарственных веществ Обратимое, необратимое. Связывание лекарственного вещества с соответствующим субстратом является обратимым, если они (субстрат и лекарство) связываются друг с другом на какое-то время. В немногих случаях терапевтическая цель требует необратимого выключения структуры из ее функции. Это относится, например, к большинству противомикробных, противоопухолевых средств, которые способны образовывать прочные (ковалентные) связи с элементами спиралей ДНК клеток («сшивки спиралей») или ферментами бактерий, в результате чего клетки утрачивают способность к размножению.

    Виды действия лекарственных веществ Прямое, опосредованное (косвенное). Прямое действие подразумевает, что лечебный эффект обусловлен непосредственным взаимодействием препарата с биосубстратом больного органа и прямо ведет к определенным сдвигам. Если же функция органа (системы) изменяется вторично в результате прямого влияния препарата на иной орган, иную систему, такое действие называется опосредованным (косвенным). Сердечные гликозиды улучшают сократимость миокарда (прямое действие) и, как следствие, улучшают кровообращение в организме, что сопровождается улучшением диуреза (косвенное действие).

    Виды действия лекарственных веществ Местное, резорбтивное. Местное действие препарата осуществляется до его всасывания в кровь (например, мази). Резорбтивное (системное) действие развивается после всасывания препарата в кровь. Таким действием обладает подавляющее большинство лекарств.

    Виды действия лекарственных веществ Избирательное, общее Избирательное (селективное) действие - это действие терапевтических доз лекарств на специфические рецепторы. Например, действие сальбутамола на β 2 адренорецепторы. Общее действие когда лекарственные вещества не имеют выраженного избирательного действия (антибиотики).

    В современной фармакотерапии особенно большое значение придаётся изучению фармакокинетики лекарственных средств, включающей определение скорости и полноты всасывания препарата при разных путях введения, в том числе при пероральном применении, связывания с белками плазмы (при всех способах введения), начала действия, времени достижения максимальной концентрации в плазме крови, периода полувыведения (Т 1/2), времени полного выведения (после прекращения введения препарата), путей выведения и количества препарата (в процентах), выводимого разными путями (в неизменённом виде или в виде метаболитов). Определение этих параметров и их сопоставление с динамикой терапевтического эффекта позволяет установить оптимальные дозы и режим (частоту, длительность) применения препарата, оценить (по сопоставлению доз и эффективности) преимущества разных препаратов, осуществить выбор наиболее приемлемого из них, корригировать дозировки в случаях нарушений функций внутренних органов и др.

    Изучение в полном объёме фармакокинетических параметров для каждого больного в повседневной практике почти неосуществимо в силу сложности исследования и, иногда, недостатка необходимой аппаратуры - хроматографов, масс-спектрометров и т. д. Проводятся эти исследования в основном в клинико-фармакологических лечебных учреждениях и в экспериментальных лабораториях. Однако знание имеющихся данных о фармакокинетических параметрах применяющихся лекарственных средств необходимо каждому современному врачу.

    К фармакокинетическим исследованиям примыкает изучение метаболизма лекарственных средств. Попадая в организм, большинство лекарственных средств подвергается метаболическим превращениям (фрагментированию молекул, гидроксилированию, восстановлению, деметилированию и др.). Лишь отдельные лекарства выделяются из организма в неизменённом виде. Образующиеся метаболиты (а их количество у разных соединений составляет от единиц до десятков) могут быть активными, малоактивными, неактивными, а в некоторых случаях и токсичными. Нередко основной фармакологический и лечебный эффект определяется активным метаболизмом, т. е. действует, собственно, не применяемое лекарственное средство, а продукт его метаболического превращения. В этих случаях используемое лекарственное средство рассматривается как «пролекарство».

    Первыми пролекарствами были давно известные «старые» препараты. Гексаметилентетрамин (уротропин) действует, высвобождая в организме (в кислотной среде) формальдегид. Фенилсалицилат (салол) метаболизирустся с образованием фенола и салициловой кислоты, а первый сульфаниламидный антибактериальный препарат пронтозил («красный» стрептоцид) - активного метаболита сульфаниламида («белого» стрептоцида), полностью заменившего в качестве лекарственного средства пролекарство.

    Пролекарствами являются различные современные лекарственные средства. Применяемый для лечения язвенного колита салазосульфапиридин метаболизируется с образованием активных сульфаниламидного и салицилового компонентов. Имипрамин имеет активный метаболит дезипрамин, применяемый в качестве самостоятельного антидепрессанта. Действующим веществом ингибитора АПФ эналаприла является его метаболит эналаприлат. Блокатор рецепторов ангиотензина II лозартан образует активный метаболит, специфически связывающийся с АТ1-рецепторами, и т. д.

    Метаболизм лекарственных средств осуществляется под влиянием различных ферментных систем организма. Особенно важную роль играют при этом микросомальные и другие ферменты печени, под действием которых происходит инактивирование (дезинтоксикация) лекарственных средств. При нарушениях функций печени её дезинтоксикационная способность может изменяться. Имеется ряд лекарственных средств, являющихся как «индукторами», так и «ингибиторами» ферментов печени, которые соответственно усиливают или подавляют метаболизм и дезинтоксикацию других лекарственных средств. К наиболее известным «индукторам» относятся барбитураты, а также дифенин, карбамазепин, рифампицин. Впервые «индукция» ферментов привлекла внимание в связи с развитием опасных кровотечений при применении барбитуратов одновременно с непрямыми (пероральными) антикоагулянтами (дикумарином и др.). Антикоагулянты назначали больным в дозах, необходимых для создания противосвёртывающего эффекта, но они были выше обычных, так как активность антикоагулянтов снижалась под влиянием барбитуратов. При отмене же последних и продолжении применения анти коагулянта в прежних дозах развивались тяжёлые геморрагические осложнения (вплоть до летальных исходов).

    Сами антикоагулянты (производные кумарина), а также циметидин, изониазид, левомицетин, тетурам и ряд других лекарственных средств являются ингибиторами ферментов печени (в частности, усиливают действие пероральных гипогликемических препаратов, теофиллина, дифенина, β-адреноблокаторов и некоторых других лекарственных средств). Изучение влияния новых лекарственных средств на активность ферментов печени стало одним из важных элементов фармакокинетических исследований. Учёт этих особенностей играет важную роль при совместном применении (взаимодействии) разных лекарственных средств.

    Всасывание (абсорбция) - есть преодоление барьеров, разделяющих место введения лекарства и кровяное русло.

    Для каждого лекарственного вещества определяется специальный показатель – биодоступность . Она выражается в процентах и характеризует скорость и степень всасывания ЛС с места введения в системный кровоток и накопление в крови в терапевтической концентрации.

    В фармакокинетике лекарственных препаратов выделяют четыре основных этапа.

    Этап - всасывание.

    В основе всасывания лежат следующие основные механизмы:

    1. Пассивная диффузия молекул, которая идет в основном по градиенту концен­трации. Интенсивность и полнота всасывания прямо пропорциональны липофильности, то есть, чем больше липофильность, тем выше способность вещества всасываться.

    2. Фильтрация через поры клеточных мембран. Этот механизм задействован только при всасывании низкомолекулярных соединений, размер которых не превышает размер клеточных пор (вода, многие катионы). Зависит от гидростатического давления.

    3. Активный транспорт обычно осуществляется с помощью специальных транспортных систем, идет с затратой энергии, против градиента концентрации.

    4. Пиноцитоз характерен лишь для высокомолекулярных соединений (полимеров, полипептидов). Происходит с образованием и прохождением везикул через клеточные мембраны.

    Всасывание лекарственных веществ может осуществляться этими механиз­мами при различных путях введения (энтеральных и парентеральных), кроме внутривенного, при котором препарат сразу поступает в кровоток. Кроме того, перечисленные механизмы участвуют в распределении и выведении лекарств.

    Этап - распределение.

    После попадания лекарственного вещества в кровь, оно разносится по всему организму и распределяется в соответствии со своими физико-химическими и биологическими свойствами.

    В организме есть определенные барьеры, регулирующие проникновение веществ в органы и ткани: гематоэнцефалический (ГЭБ), гематоплацентарный (ГПБ), гематоофтальмологический (ГОБ) барьеры.

    3 этап - метаболизм (превращение). Существуют два основных пути метаболизма лекарственных веществ:

    ü биотрансформация , происходит под дей­ствием ферментов - окисление, восстановление, гидролиз.

    ü конъюгация , при которой происходит присоединение к молекуле вещества остатков других молекул, с образованием неактивного комплекса, легко выводимого из организма с мочой или калом.

    Эти процессы влекут за собой инактивацию или разрушение лекарственных веществ (детоксикацию), образование менее активных соединений, гидрофильных и легко выводимых из организма.

    В ряде случаев лекарственный препарат становится активным лишь после реакций метаболизма в организме, то есть он является пролекарством , превращающимся в лекарство только в организме.

    Главная роль в биотрансформации принадлежит микросомальным ферментам печени.

    4 этап - выведение (экскреция) . Лекарственные вещества через определенное время выводятся из организма в неизмененном виде или в виде метаболитов.

    Гидрофильные вещества выделяются почками. Таким способом выделяется большинство ЛС.

    Многие липофильные лекарственные вещества выводятся через печень в составе желчи, поступающей в кишечник. Выделившиеся в кишечник с желчью ЛС и их метаболиты могут выделиться с калом, повторно всосаться в кровь и снова через печень выделится с желчью в кишечник (энтерогепатическая циркуляция).

    Лекарственные вещества могут выводиться через потовые и сальные железы (йод, бром, салицилаты). Летучие лекарственные вещества выделяются через легкие с выдыхаемым воздухом. Молочные железы выделяют с молоком различные соединения (снотворные, спирт, антибиотики, сульфаниламиды), что следует учитывать при назначении лекарственного средства кормящим женщинам.

    Элиминация - процесс освобождения организма от лекарственного вещества в результате инактивации и выведения.

    Общий клиренс ЛС (от англ. сlearance – очистка) – объем плазмы крови, очищаемый от ЛС за единицу времени (мл/мин) за счет выведения почками, печенью и другими путями.

    Период полувыведения (Т 0,5) – время, в течение которого концентрация активного лекарствен­ного вещества в крови снижается в два раза.

    Фармакодинамика

    изучает локализацию, механизмы действия ЛС, а также изменения в деятельности органов и систем организма под влиянием лекарственного вещества, т.е. фармакологические эффекты.

    Механизмы действия ЛС

    Фармакологический эффект - воздействие лекарственного вещества на организм, вызывающее изменения в деятельности определенных органов, тканей и систем (усиление работы сердца, устранение спазма бронхов, понижение или повышение артериального давления и т.д.).

    Способы, которыми лекарственные вещества вызывают фармакологические эффекты, определяются как механизмы действия лекарственных веществ.

    Лекарственные вещества взаимодействуют со специфическими рецепторами клеточных мембран, через которые осуществляется регуляция деятельности органов и систем. Рецепторы – это активные участки макромолекул, с которыми специфически взаимодействуют медиаторы или гормоны.

    Для характеристики связывания вещества с рецептором используется термин аффинитет.

    Аффинитет определяется как способность вещества связываться с рецептором, в результате чего происходит образование комплекса «вещество-рецептор».

    Лекарственные вещества, стимулирующие (возбуждающие) эти рецепторы и вызывающие такие эффекты, как и эндогенные вещества (медиаторы), получили название миметиков, стимуляторов или агонистов . Агонисты благодаря сходству с естественными медиаторами стимулируют рецепторы, но действуют более продолжительно в связи с их большей устойчивостью к разрушению.

    Вещества, связывающиеся с рецепторами и препятствующие действию эндогенных веществ (нейромедиаторов, гормонов) называются блокаторами, ингибиторами или антагонистами.

    Во многих случаях действие ЛС связано с их влияниями на ферментные системы или отдельные ферменты;

    Иногда лекарственные средства угнетают транспорт ионов через клеточные мембраны или стабилизируют клеточные мембраны.

    Ряд веществ влияют на метаболические процессы внутри клетки, а также проявляют другие механизмы действия.

    Фармакологическая активность ЛС – способность вещества или комбинации нескольких веществ изменять состояние и функции живого организма.

    Эффективность ЛС – характеристика степени положительного влияния ЛС на течение или продолжительность заболевания, предотвращение беременности, реабилитацию больных путем внутреннего или внешнего применения.

    I . Общая фармакология

    А. Фармакокинетика

    Фармакокинетика - всасывание, распределение, депонирование, превращения и выведение лекарственных веществ.

    Все эти процессы связаны с проникновением лекарственных веществ через клеточную (цитоплазматическую) мембрану. Основные способы проникновения веществ через клеточную мембрану: пассивная диффузия, фильтрация, активный транспорт, облегченная диффузия, пиноцитоз.

    Пассивная диффузия - проникновение веществ через мембрану в любом ее месте по градиенту концентрации (если с одной стороны мембраны концентрация вещества выше, чем с другой стороны, вещество проникает через мембрану в сторону меньшей концентрации). Так как мембраны состоят в основном из липидов, путем пассивной диффузии через клеточную мембрану легко проникают липофильные неполярные вещества, т.е. вещества, которые хорошо растворимы в липидах и не несут электрических зарядов. Наоборот, гидрофильные полярные вещества (вещества, хорошо растворимые в воде и имеющие электрические заряды) путем пассивной диффузии через мембрану практически не проникают.

    Многие лекарственные вещества являются слабыми электролитами - слабокислыми соединениями или слабыми основаниями. В растворе часть таких веществ находится в неионизированной (неполярной) форме, а часть - в виде ионов, несущих электрические заряды. Ионизация кислых соединений происходит путем их диссоциации.

    Ионизация оснований происходит путем их протонирования.

    Путем пассивной диффузии через мембраны проникает неионизированная (неполярная) часть слабого электролита. Таким образом, пассивная диффузия слабых электролитов обратно пропорциональна степени их ионизации.

    В кислой среде увеличивается ионизация оснований, а в щелочной среде - ионизация кислых соединений. Однако при этом следует учитывать показатель рК а - отрицательный логарифм константы ионизации. Численно рК а равен рН, при котором ионизирована половина молекул соединения.

    Значения рК а для разных кислот и разных оснований могут существенно различаться. Можно предположить, например, что ацетилсалициловая кислота (аспирин) при рН 4,5 будет мало диссоциировать. Однако для ацетилсалициловой кислоты рК а =3,5 и результат получается неожиданным.

    Для определения степени ионизации используют формулу Henderson - Hasselbalch :


    Следовательно, при рН 4,5 ацетилсалициловая кислотапочти полностью диссоциирована.

    Фильтрация. В клеточной мембране имеются водные каналы (водные поры), через которые проходит вода и могут проходить растворенные в воде гидрофильные полярные вещества, если размеры их молекул не превышают диаметра каналов. Этот процесс называют фильтрацией.

    Так как через водные каналы цитоплазматической мембраны нет постоянного однонаправленного движения воды, ряд авторов считают, что через водные каналы гидрофильные полярные вещества проникают путем пассивной диффузии по градиенту концентрации (пассивная диффузия в водной фазе).

    Однако диаметр водных каналов цитоплазматической мембраны очень мал - 0,4нм, поэтому большинство лекарственных веществ через эти каналы не проходят.

    Фильтрацией называют также прохождение воды и растворенных в ней веществчерез межклеточные промежутки. Путем фильтрации через межклеточные промежутки проходят гидрофильные полярные вещества. Степень их фильтрации зависит от величины межклеточных промежутков.

    В эндотелии сосудов мозга межклеточные промежутки отсутствуют и фильтрация большинства лекарственных веществ невозможна. Эндотелий сосудов мозга образует барьер, который препятствует проникновению гидрофильных полярных веществ из крови в мозг, -гематоэнцефалический барьер.

    В некоторых областях головного мозга имеются «дефекты» гематоэнцефалического барьера, через которые возможно прохождение гидрофильных полярных веществ. Так, в areapostrema продолгова­того мозга гидрофильные полярные вещества могут проникать в триггер-зону рвотного центра.

    Некоторые гидрофильные полярные вещества проникают через гематоэнцефалический барьер путем активного транспорта (например, леводопа).

    Липофильные неполярные вещества легко проходят через гематоэнцефалический барьер путем пассивной диффузии.

    В эндотелии сосудов периферических тканей (мышцы, подкожная клетчатка, внутренние органы) межклеточные промежутки достаточно велики и большинство гидрофильных полярных лекар­ственных веществ легко проходят через них путем фильтрации. При внутривенном введении эти вещества быстро проникают в ткани. При подкожном, внутримышечном введении вещества проникают из тканей в кровь и распространяются по организму.

    В желудочно-кишечном тракте промежутки между клетками эпителия слизистой оболочки невелики и фильтрация веществ ограничена, поэтому в желудочно-кишечном тракте гидрофильные полярные соединения всасываются плохо. Так, гидрофильное полярное соединение неостигмин (прозерин) под кожу вводят в дозе 0,0005г, а для получения сходного эффекта при приеме внутрь требуется доза 0,015г.

    Липофильные неполярные вещества в желудочно-кишечном тракте хорошо всасываются путем пассивной диффузии.

    Активный транспорт - транспорт лекарственных веществ через мембраны с помощью специальных транспортных систем. Такими транспортными системами обычно являются функционально активные белковые молекулы, встроенные в цитоплазматическую мембрану. Лекарственное вещество, имеющее аффинитет к транспортной системе, соединяется с местами связывания этой системы с одной стороны мембраны; затем происходит конформация белковой молекулы и вещество высвобождается с другой стороны мембраны.

    Активный транспорт избирателен, насыщаем, требует затрат энергии, может происходить против градиента концентрации.

    Облегченная диффузия - перенос вещества через мембраны специальными транспортными системами по градиенту концентрации без затрат энергии.

    Пиноцитоз - впячивания клеточной мембраны, окружающие молекулы вещества и образующие вакуоли, которые проникают через клетку и высвобождают вещество с другой стороны клетки.

    1. Всасывание (абсорбция)

    При большинстве путей введения лекарственные вещества, прежде чем они попадут в кровь, проходят процесс всасывания.

    Различают энтеральные (через пищеварительный тракт) и парентеральные (помимо пищеварительного тракта) пути введения лекарственных веществ.

    Энтеральные пути введения - введение веществ под язык, внутрь, ректально. При этих путях введения вещества всасываются в основном путем пассивной диффузии. Поэтому хорошо всасываются липофильные неполярные вещества и плохо - гидрофильные полярные соединения.

    При введении веществ под язык (сублингвально) всасывание происходит быстро и вещества попадают в кровь, минуя печень. Однако всасывающая поверхность невелика и таким путем можно вводить только высокоактивные вещества, назначаемые в малых дозах. Например, сублингвально применяют таблетки нитроглицерина, содержащие 0,0005г нитроглицерина; действие наступает через 1-2 мин.

    При назначении веществ внутрь (peros ) лекарственные средства (таблетки, драже, микстуры и др.) проглатывают; всасывание веществ происходит в основном в тонком кишечнике.

    Из тонкого кишечника вещества через систему воротной вены попадают в печень и только затем - в общий кровоток. В печени многие вещества подвергаются превращениям (биотрансформация); некоторые вещества выделяются из печени с желчью. В связи с этим в кровь может попасть лишь часть вводимого вещества; остальная часть подвергаетсяэлиминации при первом прохождении (пассаже) через печень.

    Лекарственные вещества могут неполностью всасываться в кишечнике, подвергаться метаболизму в стенке кишечника. Поэтому часто используют более общий термин -«пресистемная элиминация».

    Количество неизмененного вещества, попавшего в общий кровоток, в процентном отношении к введенному количеству обозначают термином«биодоступность». Например, биодоступность про-пранолола 30%. Это означает, что при приеме внутрь в дозе 0,01г (10мг) только 0,003г (3мг) неизмененного пропранолола попадает в кровь.

    Для определения биодоступности лекарственное вещество вводят в вену (при внутривенном введении биодоступность вещества - 100%). Через определенные интервалы времени определяют концентрации вещества в плазме крови и строят кривую изменения концентрации вещества во времени. Затем ту же дозу вещества назначают внутрь, определяют концентрации вещества в крови и строят кривую концентрация-время (рис. 1).

    Измеряют площади под кривыми - AUC (AreaUndertheCurve ). Биодоступность - F (Fraction ) определяют как отношение AUC при назначении внутрь к AUC при внутривенном введении и обозначают в процентах

    При одинаковой биодоступности двух веществ скорость их поступления в общий кровоток может быть различной. Соответственно различными будут время достижения пиковой концентрации, максимальная концентрация в плазме крови, величина фармакологического эффекта. В связи с этим вводят понятие «биоэквивалентность». Биоэквивалентность двух веществ означает сходные биодоступность, пик действия, характер и величину фармакологического эффекта.

    Некоторые лекарственные средства вводят ректально (в прямую кишку) в виде ректальных суппозиториев (свечей) или лекарственных клизм. При этом 50% вещества после всасывания попадает в кровь, минуя печень.

    Время, ч

    Рис. 1. Биодоступность лекарственного вещества

    Биодоступность (F - Fraction ) определяется как отношение площадей под кривыми

    концентрация - время (AUC ) при приеме вещества внутрь и введении внутривенно.

    Парентеральные пути введения - введение веществ, минуя пищеварительный тракт. Наиболее употребительные парентеральные пути введения - в вену, под кожу, в мышцы.

    При внутривенном введении лекарственное вещество сразу попадает в кровь; действие вещества развивается очень быстро, обычно в течение 1-2мин. Чтобы не создавать в крови слишком высокой концентрации вещества, большинство лекарственных средств перед внутривенным введением разводят в 10-20мл изотонического (0,9%) раствора натрия хлорида или изотонического (5%) раствора глюкозы и вводят медленно - в течение нескольких минут. Нередко лекарственные вещества в 250-500мл изотоническо­го раствора водят в вену капельно, иногда в течение многих часов.

    В вену нельзя вводить масляные растворы и взвеси (суспензии) в связи с опасностью закупорки сосудов (эмболии). Однако внутривенно иногда вводят небольшие количества гипертонических растворов (например, 10-20мл 40% раствора глюкозы), которые быстро разводятся кровью.

    При внутримышечном введении (чаще всего в мышцы ягодицы) вещества могут всасываться путем пассивной диффузии и путем фильтрации (через межклеточные промежутки в эндотелии кровеносных сосудов). Таким образом, внутримышечно можно вводить и липофильные неполярные, и гидрофильные полярные соединения.

    В мышцы нельзя вводить гипертонические растворы и раздражающие вещества. В то же время, в мышцы вводят масляные растворы и взвеси (суспензии). При введении взвеси в мышце создается депо препарата, из которого лекарственное вещество может медленно и длительно всасываться в кровь.

    При подкожном введении (в подкожную жировую клетчатку) вещества всасываются так же, как и при внутримышечном введении, но более медленно, так как кровоснабжение подкожной клетчатки меньше, чем кровоснабжение скелетных мышц. Под кожу иногда вводят масляные растворы и взвеси. Однако по сравнению с введением в мышцы масляные растворы и взвеси медленнее всасываются и могут образовывать инфильтраты.

    Из других путей введения лекарственных средств в клинической практике используют ингаляционное введение (вдыхание газообразных веществ, паров летучих жидкостей, аэрозолей), введение веществ под оболочки мозга, внутриартериальное введение и некоторые другие.

    2. Распределение

    При попадании в общий кровоток липофильные неполярные вещества распределяются в организме относительно равномерно, а гидрофильные полярные вещества - неравномерно, Препятствиями для распределения гидрофильных полярных веществ являются, в частности,гистогемагпические барьеры, т.е. барьеры, отделяющие некоторые ткани от крови. К таким барьерам относятся гематоэнцефалический, гематоофтальмический и плацентарный барьеры.

    Гематоэнцефалический барьер образован слоем эндотелиальных клеток капилляров мозга, в котором отсутствуют межклеточные промежутки. Гематоэнцефалический барьер препятствует проникновению гидрофильных полярных веществ из крови в ткани мозга. При воспалении мозговых оболочек проницаемость гематоэнцефалического барьера повышается.

    Гематоофтальмический барьер препятствует проникновению гидрофильных полярных веществ из крови в ткани глаз.

    Плацентарный барьер во время беременности препятствует проникновению ряда веществ из организма матери в организм плода.

    Для характеристики распределения лекарственного вещества используюткажущийся объем распределения - V d (Volumeofdistribution ).

    В системе однокамерной фармакокинетической модели ,

    где D - доза, С о - начальная концентрация. Поэтому кажущийся объем распределения можно определить как гипотетический объем жидкостей организма, в котором после внутривенного введения, при условии мгновенного и равномерного распределения концентрация вещества равна его концентрации в плазме крови. V d определяют в литрах или л/кг.

    Если для условного человека с массой тела 70 кг V d =3л (объем плазмы крови), это означает, что вещество находится в плазме крови, не проникает в форменные элементы крови и не выходит за пределы кровеносного русла.

    V d =15л означает, что вещество находится в плазме крови (3л), в межклеточной жидкости (12л) и не проникает в клетки тканей.

    V d =40л (общее количество жидкости в организме) означает, что вещество распределено во внеклеточной и внутриклеточной жидкости.

    V d =400-600-1000л означает, что вещество депонировано в периферических тканях и его концентрация в крови низкая. Например, для имипрамина (трициклический антидепрессант) V d =23л/кг, т.е. примерно 1600л. В связи с этим концентрация имипрамина в крови очень низкая и при отравлении имипрамином гемодиализ не эффективен.

    3. Депонирование

    При распределении лекарственного вещества в организме часть вещества может задерживаться (депонироваться) в различных тканях. Из «депо» вещество высвобождается в кровь и оказывает фармакологическое действие. Липофильные вещества могут депонироваться в жировой ткани. Так, средство для внутривенного наркоза тиопентал-натрий вызывает наркоз, который продолжается 15-20мин. Кратковременность действия связана с тем, что 90% тиопентала-натрия депонируется в жировой ткани. После прекращения наркоза наступает посленаркозный сон, который продолжается 2-3ч и связан с действием препарата, высвобождаемого из жирового депо.

    Антибиотики из группы тетрациклинов на длительное время депонируются в костной ткани. Тетрациклины не рекомендуют назначать детям до 8 лет, так как, депонируясь в костной ткани, они могут нарушать развитие скелета.

    Многие вещества депонируются в крови, связываясь с белками плазмы крови. В соединении с белками плазмы вещества не проявляют фармакологической активности. Однако часть вещества выс­вобождается из связи с белками и оказывает фармакологическое действие. Вещества, которые более прочно связываются с белками, могут вытеснять вещества с меньшей прочностью связывания. Действие вытесненного вещества при этом усиливается, так как увеличивается концентрация в плазме крови его свободной (активной) формы. Например, сульфаниламиды, салицилаты могут таким образом усиливать действие назначаемых одновременно непрямых антикоагулянтов. При этом свертываемость крови может чрезмерно снижаться, что ведет к кровотечениям.

    4. Биотрансформация

    Большинство лекарственных веществ в организме подвергается превращениям (биотрансформации). Различаютметаболическую трансформацию (окисление, восстановление, гидролиз) иконъюгацию (ацетилирование, метилирование, образование соединений с глюкуроновой кислотой и др.). Соответственно, продукты превращений называют метаболитами и конъюгатами. Обычно вещество подвергается сначала метаболической трансформации, а затем конъюгации. Метаболиты, как правило, менее активны, чем исходные соединения, но иногда оказываются активнее (токсичнее) исходных веществ. Конъюгаты обычно малоактивны.

    Большинство лекарственных веществ подвергается биотрансформации в печени под влиянием ферментов, локализованных в эндоплазматическом ретикулуме клеток печени и называемыхмикросомальными ферментами (в основном изоферменты цитохрома Р-450).

    Эти ферменты действуют на липофильные неполярные вещества, превращая их в гидрофильные полярные соединения, которые легче выводятся из организма. Активность микросомальных ферментов зависит от пола, возраста, заболеваний печени, действия некоторых лекарственных средств.

    Так, у мужчин активность микросомальных ферментов несколько выше, чем у женщин (синтез этих ферментов стимулируется мужскими половыми гормонами). Поэтому мужчины более устойчивы к действию многих фармакологических веществ.

    У новорожденных система микросомальных ферментов несовершенна, поэтому ряд лекарственных веществ (например, хлорамфеникол) в первые недели жизни назначать не рекомендуют в связи с их выраженным токсическим действием.

    Активность микросомальных ферментов печени снижается в пожилом возрасте, поэтому многие лекарственные препараты лицам старше 60 лет назначают в меньших дозах по сравнению с ли­цами среднего возраста.

    При заболеваниях печени активность микросомальных ферментов может снижаться, замедляется биотрансформация лекарственных средств, усиливается и удлиняется их действие.

    Известны лекарственные вещества, индуцирующие синтез микросомальных ферментов печени, например, фенобарбитал, гризеофульвин, рифампицин. Индукция синтеза микросомальных ферментов при применении указанных лекарственных веществ развивается постепенно (примерно в течение 2 нед). При одновременном назначении с ними других препаратов (например, глюкокортикоидов, противозачаточных средств для приема внутрь) действие последних может ослабляться.

    Некоторые лекарственные вещества (циметидин, хлорамфеникол и др.) снижают активность микросомальных ферментов печени и поэтому могут усиливать действие других препаратов.

    5. Выведение (экскреция)

    Большинство лекарственных веществ выводится из организма через почки в неизмененном виде или в виде продуктов биотрансформации. В почечные канальцы вещества могут поступать при фильтрации плазмы крови в почечных клубочках. Многие вещества секретируются в просвет проксимальных канальцев. Транспортные системы, которые обеспечивают эту секрецию, малоспецифичны, поэтому разные вещества могут конкурировать за связывание с транспортными системами. При этом одно вещество может задерживать секрецию другого вещества и таким образом задерживать его выведение из организма. Например, хинидин замедляет секрецию дигоксина, концентрация дигоксина в плазме крови повышается, возможно проявление токсического действия дигоксина (аритмии и др.).

    Липофильные неполярные вещества в канальцах подвергаются обратному всасыванию (реабсорбции) путем пассивной диффузии. Гидрофильные полярные соединения мало реабсорбируются и вы­водятся почками.

    Выведение (экскреция) слабых электролитов прямо пропорционально степени их ионизации (ионизированные соединения мало реабсорбируются). Поэтому для ускоренного выведения кислых соединений (например, производных барбитуровой кислоты, салицилатов) реакцию мочи следует изменять в щелочную сторону, а для выведения оснований - в кислую.

    Кроме того, лекарственные вещества могут выделяться через желудочно-кишечный тракт (выделение с желчью), с секретами потовых, слюнных, бронхиальных и других желез. Летучие лекарственные вещества выделяются из организма через легкие с выдыхаемым воздухом.

    У женщин в период кормления грудью лекарственные вещества могут выделяться молочными железами и с молоком попадать в организм ребенка. Поэтому кормящим матерям не следует назначать лекарства, которые могут неблагоприятно воздействовать на ребенка.

    Биотрансформация и экскреция лекарственных веществ объединяются термином«элиминация». Для характеристики элиминации используют константу элиминации - к е1 (к е) и период полуэлиминации - t 1/2 .

    Константа элиминации показывает, какая часть вещества элиминируется в единицу времени. Например, внутривенно введено вещество А в дозе 10 мг; к е1 =0,1/ч. Через 1 ч в плазме крови останется 9 мг, через 2 ч - 8,1мг.

    Период полуэлиминации - t 1/2 - время, за которое концентрация вещества в плазме крови снижается наполовину. В основное время элиминации t 1/2 не зависит от дозы вещества и одинаков в разное


    Общий (total ) клиренс определяется по формуле Cl t = V d * k e [ .

    Другими словами, Cl t показывает, какая часть объема распределения освобождается от вещества в единицу времени.

    Для оптимального терапевтического эффекта и для предупреждения токсического действия необходимо поддерживать в плазме крови постоянную (стационарную) терапевтическую концентрацию лекарственного вещества. Стационарную концентрацию обозначают как C ss (steady - stateconcentration ). В справочниках и руководствах по фармакологии приводят значения средних терапевтичес­ких концентраций для наиболее употребительных лекарственных веществ.

    Определяют также минимальную терапевтическую концентрацию (минимальную эффективную концентрацию) - C ss min и максимальную терапевтическую концентрацию (максимальную безопасную концентрацию) - C ss max , выше которой концентрации становятся токсическими. Интервал между C ss min и C ss max соответствуеттерапевтической широте (рис.2). Чем больше терапевтическая широта лекарственного средства, тем легче его использовать в практической медицине. Наоборот, при малой терапевтической широте увеличивается вероятность попадания в зону токсических концентраций.

    Для поддержания средней терапевтической концентрации лекарственного вещества можно вводить раствор этого вещества внутривенно капельно. При этом концентрация вещества в плазме крови сначала повышается быстро, затем медленнее и, наконец, устанавливается стационарная концентрация, при которой скорость введения вещества равна скорости его элиминации (биотрансформация+экскреция). Скорость введения определяют по формуле


    Однако значительно чаще лекарственные вещества назначают внутрь или в виде отдельных инъекций. В этих случаях целесообразно сначала вводитьнагрузочную дозу для быстрого достижения терапевтической концентрации, а затем назначать малые дозы, которые поддерживают терапевтическую концентрацию, - ..