Кван­товые числа. Атомные орбитали

Согласно принципу неопределенности Гейзенберга, положение и момент электрона не поддаются одновременному определению с абсолютной точностью. Однако, несмотря на невозможность точного определения положения электрона, можно указать вероятность нахождения электрона в определенном положении в любой момент времени. Область пространства, в которой высока вероятность обнаружения электрона, называется орбиталью. Понятие «орбиталь» не следует отождествлять с понятием орбита, которое используется в теории Бора. Под орбитой в теории Бора понимается траектория (путь) электрона вокруг ядра.

Электроны могут занимать орбитали четырех разных типов, которые называются s-, р-, d- и f-орбиталями. Эти орбитали могут быть представлены трехмерными ограничивающими их поверхностями. Области пространства, ограниченные этими поверхностями, обычно выбираются так, чтобы вероятность обнаружения внутри них одного электрона составляла 95%. На рис. 1.18 схематически изображена форма s- и -орбиталей. s-Орбиталь имеет сферическую форму, а -орбитали - форму гантелей.

Поскольку электрон имеет отрицательный заряд, его орбиталь может рассматриваться как некоторое распределение заряда. Такое распределение принято называть электронным облаком (рис. 1.19).

Рис. 1.18. Форма s- и p-орбиталей.

Рис. 1.19. Электронное облако в поперечном разрезе. Окружностью представлена область вокруг ядра, в пределах которой вероятность нахождения электрона равна 95%.

В связи с тем, что при описании элементов их подразделяют на группы с разными орбиталями, очень кратко напомним сущность этого понятия.

Согласно модели атома Бора, электроны вращаются вокруг ядра по круговым орбиталям (оболочкам ). Каждая оболочка имеет строго определенный энергетический уровень и характеризуется некоторым квантовым числом. В природе возможны только определенные энергии электрона, то есть дискретные (квантованные) энергии орбиталей («разрешенные»). Теория Бора приписывает электронным оболочкам К, L, М, N и далее в порядке латинского алфавита, в соответствии с повышающимся энергетическим уровнем оболочек, главное квантовое число п , равное 1, 2, 3, 4 и т.д. В последующем оказалось, что электронные оболочки расщеплены на подоболочки, и каждой свойствен определенный квантовый энергетический уровень, характеризующийся орбитальным квантовым числом l .

Согласно принципу неопределенности Гейзенберга, точно определить местонахождение электрона в любой определенный момент времени невозможно. Однако можно указать вероятность этого. Область пространства, в которой вероятность нахождения электрона наиболее высока, называется орбиталью . Электроны могут занимать 4 орбитали разных типов, которые называются s- (sharp — резкая), р- (principal — главная), d- (diffuse — диффузная) и f- (fundamental — базовая) орбитали. Раньше этими буквами обозначали спектральные линии водорода, но в настоящее время их используют только в качестве символов, без расшифровки.

Орбитали можно представить в виде трехмерных поверхностей. Обычно области пространства, ограниченные этими поверхностями, выбирают так, чтобы вероятность обнаружения внутри них электрона составляла 95%. Схематическое изображение орбиталей представлено на рис. 1.

Рис. 1.

s-Орбиталь имеет сферическую форму, р-орбиталь — форму гантели, d-opбиталь — форму двух гантелей, перекрещивающихся в двух узловых взаимно перпендикулярных плоскостях, s-подоболочка состоит из одной s-орбитали, р-подоболочка — из 3 р-орбиталей, d-подоболочка — из 5 d-орбиталей.

Если не прикладывать магнитное поле, все орбитали одной подоболочки будут иметь одинаковую энергию; их в этом случае называют вырожденными . Однако во внешнем магнитном поле подоболочки расщепляются (эффект Зеемана ). Этот эффект возможен для всех орбиталей, кроме s-орбитали. Он характеризуется магнитным квантовым числом т . Эффект Зеемана используют в современных атомно-абсорбционных спектрофотометрах(ААСФ) для увеличения их чувствительности и снижения предела обнаружения при элементных анализах.

Для биологии и медицины существенно, что орбитали одной симметрии, то есть с одинаковыми числами l и т , но с разным значением главного квантового числа (например, орбитали 1s, 2s, 3s, 4s), различаются по своему относительному размеру. Объем внутреннего пространства электронных орбита-лей больше у атомов с большим значением п . Увеличение объема орбитали сопровождается ее разрыхлением. При комплексообразоваиии размер атома играет важную роль, поскольку определяет структуру координационных соединений. В табл. 1 приведено соотношение количества электронов и главного квантового числа.

Таблица 1. Количество электронов при разных значениях квантового числа п

Помимо трех названных квантовых чисел, характеризующих свойства электронов каждого атома, имеется еще одно — спиновое квантовое число s , характеризующее не только электроны, но и ядра атомов.

Медицинская бионеорганика. Г.К. Барашков

После завершения формального описания квантово-механического движения стало ясно, что в атомном пространстве каждый объект имеет такую характеристику, как атомная орбиталь.

Атомная орбиталь (АО) - область пространства вокруг ядра атома, в которой по законам квантовой механики с наибольшей вероятностью находится электрон с заданной энергией.

Энергетическое состояние электрона описывается функцией трех целочисленных параметров п } I, т 1У которые называются квантовыми числами. При определенных значениях квантовых чисел можно получить характеристики области, где может находиться электрон.

Квантовые числа имеют следующий физический смысл :

  • п - главное квантовое число , характеризует энергетический уровень и размер орбитали;
  • / - орбитальное квантовое число , характеризует энергетический подуровень и форму орбитали;
  • т { - магнитное квантовое число , учитывает влияние внешнего магнитного поля на энергетическое состояние электрона.

Главное квантовое число п является натуральным и соответствует номерам периодов в таблице Д. И. Менделеева (1, 2, 3, 4, 5, 6, 7). Главное квантовое число определяет основную долю энергии электрона, находящегося на данной орбитали. Это квантовое число называют также номером энергетического уровня. Чем больше п , тем больше размер орбитали.

Атомы, в которых электроны находятся на орбиталях с большим значением п (п > 8), называются ридберговскими атомами. Первые экспериментальные данные по ридберговским атомам в радиоастрономии были получены в 1964 г. сотрудниками ФИАПа (Р. С. Сороченко и др.) на 22-метровом зеркальном радиотелескопе. При ориентации телескопа на туманность Омега в спектре ее радиоизлучения была обнаружена линия излучения с длиной волны X = 3,4 см. Эта длина волны соответствует переходу между ридберговскими состояниями п = 90 и п = 91 в спектре атома водорода. Сегодня в лаборатории получены ридберговские атомы с п ~ 600! Это почти макроскопические объекты размером около 0,1 мм и временем жизни ~1 с. Изучение ридберговских состояний атомов оказалось полезным в работах по созданию квантовых компьютеров.

При этом увеличение размера не меняет формы орбитали. Чем больше п у тем больше энергия электрона. Электроны с одинаковым значением главного квантового числа находятся на одном энергетическом уровне. Номер п энергетического уровня указывает на число подуровней, входящих в состав данного уровня.

Орбитальное квантовое число I может принимать значения / = 0, 1,2,... до (п - 1), т.е. при данном главном квантовом числе п орбитальное квантовое число / может принять п значений. Орбитальное квантовое число определяет геометрическую форму орбиталей и определяет орбитальный момент количества движения (импульс) электрона, т.е. вклад данного подуровня в общую энергию электрона. Кроме численных значений, орбитальное квантовое число / имеет и буквенное обозначение:

Формы 5-, р-, (1-, /-орбиталей приведены на рис. 1.1. Знаки, проставленные на геометрических элементах орбиталей, не являются знаками заряда, а относятся к значениям волновой функции у для этих элементов. Поскольку при расчете вероятности рассматривается | н/| 2 - квадрат величины по модулю, то области орбиталей волновой функции у со знаками «+» и «-» становятся равнозначными.

Рис. 1.1.

Сложная форма большинства орбиталей обусловлена тем, что волновая функция электрона в полярных координатах имеет две составляющие - радиальную и угловую. При этом вероятность нахождения электрона в данной точке зависит как от ее расстояния до ядра, так и от направления в пространстве вектора, связывающего ядро с этой точкой. Эти функции зависят как от / (для 5- и р-орбиталей), так и от т 1 (для с1 - и /-орбиталей).

Например, абрисом (внешним контуром) всех 5-орбиталей является сфера. По оказывается, что вероятность обнаружения электрона внутри этой сферы не равномерна, а напрямую зависит от расстояния данной орбитали от ядра. На рис. 1.2 показана внутренняя структура 15- и 25-орбиталей. Как следует из рисунка, 25-орбиталь подобна «двухслойной луковице» с внутренними оболочками, расположенными на расстоянии 1 и 4 радиуса боровской орбиты. Как правило, в химии факт сложности внутреннего строения орбиталей не играет значительной роли и в данном курсе нс рассматривается.


Рис. 1.2. Распределение вероятности обнаружения электрона в атоме водорода в состояниях is и 2s. г { = 5,29*10 11 м - радиус первой боровской орбиты

Источник : wvw.college.ru/enportal/physics/content/chapter9/section/paragraph3/theory.html

Орбитальное магнитное квантовое число m t может принимать значения от -/ до +/, включая нуль. Это квантовое число определяет ориентацию орбитали в пространстве при воздействии внешнего магнитного поля и характеризует изменение энергии электрона, находящегося на этой орбитали, под влиянием внешнего магнитного поля. Количество орбиталей с данным значением т 1 составляет (2/ + 1).

Рассмотренные три квантовых числа п, /, т { являются следствием решения волнового уравнения Шредингера и позволяют определить энергию электрона через описание его волновых свойств. При этом не учитывался двойственный характер природы элементарных частиц, их корпускулярноволновой дуализм в описании энергетического состояния электрона.

Собственное магнитное квантовое число электрона m s {спин). Как следствие корпускулярных свойств электрона , в описании его энергетического состояния играет роль еще одно число - собственное квантовое число m s электрона {спин). Это квантовое число характеризует не орбиталь, а свойство самого электрона, находящегося на этой орбитали.

Спин (от англ, spin - вертеть[-ся], вращение) - собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого. Часто используемая аналогия для описания спина как свойства, связанного с вращением электрона вокруг своей оси, оказалась несостоятельной. Такое описание приводит к противоречию со специальной теорией относительности - экваториальная скорость вращения электрона в этой модели превышает скорость света. Введение спина явилось удачным применением новой физической идеи: постулируется, что существует пространство состояний, никак не связанных с перемещением частицы в обычном пространстве. Необходимость введения такого пространства состояний свидетельствует о необходимости рассмотрения и более общего вопроса о реальности физического многомирия.

Электрон проявляет свои собственные магнитные свойства в том, что во внешнем электрическом иоле собственный момент импульса электрона ориентируется либо по полю, либо против ноля. В первом случае принимается, что собственное квантовое число электрона m s = +1/2, а во втором m s = -1/2. Отметим, что спин - единственное дробное число среди набора квантовых характеристик, определяющих состояние электрона в атоме.

m квантовыми числами.

Волновая функция рассчитывается по волновому уравнению Шрёдингера в рамках одноэлектронного приближения (метод Хартри - Фока) как волновая функция электрона, находящегося в самосогласованном поле, создаваемым ядром атома со всеми остальными электронами атома.

Сам Э.Шрёдингер рассматривал электрон в атоме как отрицательно заряженное облако, плотность которого пропорциональна квадрату значения волновой функции в соответствующей точке атома. В таком виде понятие электронного облака было воспринято и в теоретической химии.

Однако большинство физиков не разделяли убеждений Э.Шрёдингера - доказательства существования электрона как «отрицательно заряженного облака» не было. Макс Борн обосновал вероятностную трактовку квадрата волновой функции. В 1950 г. Э.Шрёдингер в статье «Что такое элементарная частица?» вынужден согласиться с доводами М.Борна, которому в 1954 году присуждена Нобелевская премия по физике с формулировкой «За фундаментальное исследование в области квантовой механики, особенно за статистическую интерпретацию волновой функции ».

Квантовые числа и номенклатура орбиталей

Радиальное распределение плотности вероятности для атомных орбиталей при различных n и l .

  • Главное квантовое число n может принимать любые целые положительные значения, начиная с единицы (n = 1,2,3, … ∞) и определяет общую энергию электрона на данной орбитали (энергетический уровень) :
Энергия для n = ∞ соответствует энергии одноэлектронной ионизации для данного энергетического уровня.
  • Орбитальное квантовое число (называемое также азимутальным или дополнительным квантовым числом) определяет момент импульса электрона и может принимать целые значения от 0 до n - 1 (l = 0,1, …, n - 1). Момент импульса при этом задаётся соотношением
Атомные орбитали принято называть по буквенному обозначению их орбитального числа:

Буквенные обозначения атомных орбиталей произошли от описания спектральных линий в атомных спектрах: s (sharp ) - резкая серия в атомных спектрах, p (principal )- главная, d (diffuse ) - диффузная, f (fundamental ) - фундаментальная.

  • Магнитное квантовое число m l определяет проекцию орбитального момента импульса на направление магнитного поля и может принимать целые значения в диапазоне от -l до l , включая 0 (m l = -l … 0 … l ):

В литературе орбитали обозначают комбинацией квантовых чисел, при этом главное квантовое число обозначают цифрой, орбитальное квантовое число - соответствующей буквой (см. таблицу ниже) и магнитное квантовое число - выражением в нижнем индексе, показывающем проекцию орбитали на декартовы оси x, y, z, например 2p x , 3d xy , 4f z(x²-y²) . Для орбиталей внешней электронной оболочки, то есть в случае описания валентных электронов, главное квантовое число в записи орбитали, как правило, опускают.

Геометрическое представление

Геометрическое представление атомной орбитали - область пространства, ограниченная поверхностью равной плотности (эквиденситной поверхностью) вероятности или заряда . Плотность вероятности на граничной поверхности выбирают исходя из решаемой задачи, но, обычно, таким образом, чтобы вероятность нахождения электрона в ограниченной области лежала в диапазоне значений 0,9-0,99.

Поскольку энергия электрона определяется кулоновским взаимодействием и, следовательно, расстоянием от ядра, то главное квантовое число n задаёт размер орбитали.

Форма и симметрия орбитали задаются орбитальными квантовыми числами l и m : s -орбитали являются сферически симметричными, p , d и f -орбитали имеют более сложную форму, определяемую угловыми частями волновой функции - угловыми функциями. Угловые функции Y lm (φ , θ) - собственные функции оператора квадрата углового момента L², зависящие от квантовых чисел l и m (см. Сферические функции), являются комплексными и описывают в сферических координатах (φ , θ) угловую зависимость вероятности нахождения электрона в центральном поле атома. Линейная комбинация этих функций определяет положение орбиталей относительно декартовых осей координат.

Для линейных комбинаций Y lm приняты следующие обозначения:

Значение орбитального квантового числа 0 1 1 1 2 2 2 2 2
Значение магнитного квантового числа 0 0 0
Линейная комбинация
Обозначение

Дополнительным фактором, иногда учитываемым в геометрическом представлении, является знак волновой функции (фаза). Этот фактор существеннен для орбиталей с орбитальным квантовым числом l , отличным от нуля, то есть не обладающих сферической симметрией: знак волновой функции их «лепестков», лежащих по разные стороны узловой плоскости, противоположен. Знак волновой функции учитывается в методе молекулярных орбиталей МО ЛКАО (молекулярные орбитали как линейная комбинация атомных орбиталей). Сегодня науке известны математические уравнения, описывающие геометрические фигуры, представляющие орбитали (зависимотси координаты электрона от времени). Это уравнения гармонических колебаний отражающие вращение частиц по всем доступным степеням свободы - орбитальное вращение, спин,... Гибридизация орбиталей представляется как интерференция колебаний.

Заполнение орбиталей электронами и электронная конфигурация атома

На каждой орбитали может быть не более двух электронов, отличающихся значением спинового квантового числа s (спина). Этот запрет определён принципом Паули . Порядок заполнения электронами орбиталей одного уровня (орбиталей с одинаковым значением главного квантового числа n ) определяется правилом Клечковского , порядок заполнения электронами орбиталей в пределах одного подуровня (орбиталей с одинаковыми значениями главного квантового числа n и орбитального квантового числа l ) определяется Правилом Хунда .

Краткую запись распределения электронов в атоме по различным электронным оболочкам атома с учётом их главного и орбитального квантовых чисел n и l называют

Общее аналитическое выражение для функций R(r), 0(0) и Ф(ф) записываются с помощью специальных математических функций. Их можно найти в специализированной литературе по квантовой механике и квантовой химии. В этом разделе на примере s-, р- и «/-электронов будут рассмотрены основные положения, принятые для описания электронных орбиталей, являющихся основой теории химической связи.

Из полученных ранее результатов следует, что описание состояния электрона в атоме оказывается намного более сложным, чем это предполагалось теорией Бора. Квантовая механика показывает, что атомный электрон может находиться в различных областях пространства, окружающего ядро, и вероятность его пребывания меняется при переходе от точки к точке. Отсюда возникло понятие электронных орбита- лей, выражающее более общее понятие электронного облака. Физики под электронной орбиталью понимают саму волновую функцию, соответствующую определенным квантовым числам. В химии под орбиталью понимается совокупность положений электрона в атоме с учетом вероятности его пребывания в тех или иных областях пространства в окрестности ядра. Эта вероятность и определяется функциями R, 0, Ф. В таблице 8.2 приведены в сферической системе координат выражения для волновых функций s-,p- и «/-электронов.

На рисунке 8.21 представлены графики функций R(r) (рис. 8.21, а) и плотности вероятности обнаружить электрон в шаровом слое толщиной dr|^^ = 4nr 2 i? 2 (r)j - (рис. 8.21, б) в зависимости от г. Следует

обратить внимание на то обстоятельство, что для j-состояний радиальная часть волновой функции при г = 0 (т.е. на ядре) (см. графики функций R{r) на рис. 8.21, а) имеют максимум. Никакого противоречия со здравым смыслом (электрон в ядре) при этом не возникает, так как функция R{r) определяет плотность вероятности, а сама вероятность

Таблица 8.2

Волновые функции для S-, р- и «/-электронов

Окончание


Примечание. В таблице приняты обозначения: а = (Z/a^rvL а 0 = Й 2 /(те 2) = = 0,5292 1(7 10 м - боровский радиус электронной орбиты атома водорода.

при т -> 0 (см. график функции 4лг 2 /? 2 (г) на рис. 8.21, б) в окрестности ядра стремится к нулю .

На рисунке 8.22 приведена схема построения графиков угловой части волновой функции 7(0, а) и ее квадрата 7 2 (0, б) на примере р г -орбитали. Значение 7(0, ф) для угла 0 изображается длиной отрезка ОМ. Целесообразно обратить внимание на то, что график функции 7(0) представляется сферами, тогда как график 7 2 (0) - вытянутыми «гантелями». Так, в табл. 8.2 были представлены волновые функции атома водорода для п = 1, 2 и 3. В первой строке этой таблицы приведены данные для 15- состояния электрона. В этом случае функция R{r) имеет максимум при г = 0 и спадает экспоненциально с увеличением г. Функция же 7(0, ф) не зависит ни от 0, ни от ф, поэтому распределение плотности вероятности | у| 2 сферически симметрично. Это же справедливо и для 25- и 35-СОСТОЯНИЙ.


Рис. 8.21. Радиальная часть волновых функций R(r ) (а) и величины 4лг 2 Л 2 (г) (б) для некоторых электронных состояний

Рис. 8.22. Схема построения графиков угловых частей волновой функции Y(0,

Решения для 2/ьсостояний ся = 2, / = 0и1и/Я/ = 0и±1 приведены в последующих строках табл. 8.2. Обращает на себя внимание факт, что решение для р г -орбитали имеет более простой вид, чем для орбиталей р х и Ру. Такое выделение оси z связано с природой сферической системы координат (см. рис 8.16). Для того, чтобы получить угловую часть волновой функции в действительной форме и найти общее аналитическое выражение для орбиталейр х ир у, надо воспользоваться тем свойством, что любая линейная комбинация решений уравнения Шредингера также является решением этого уравнения. Поэтому, воспользовавшись формулой Эйлера, надо составить линейные комбинации решений У, и У 1; _ 1, дающие действительные волновые функции:



В этом виде орбитали р х и р у представлены в табл. 8.2. Именно они широко используются в химии. Таким же образом получены угловые части в действительной форме для ^/-состояний электронов. Определив значения всех частей волновой функции в точке с г(г, 0,

В случае отсутствия какого-либо внешнего воздействия, когда нет оснований для выбора выделенной оси Oz, все решения уравнения Шредингера и все их линейные комбинации могут иметь место. Однако физического смысла они не имеют, потому что нет возможности проверить это: любая попытка установить характер орбитали внесет возмущение в систему и выделит ось Oz. В этом также проявляется особенность квантовой механики (как оказывается, прибор для исследования состояния нарушает само состояние объекта исследования).

Если же рассматриваемый атом попадает в окружение других атомов, то возникновение взаимодействий вносит существенные изменения в его энергетическое состояние. При этом в разных обстоятельствах энергетически более выгодными могут стать другие линейные комбинации решений (например, хорошо известные s-p и s-д-^-гибридные состояния, представляющие собой суперпозицию - линейную комбинацию, приведенных в табл. 8.2 орбиталей).

Вероятность пребывания электронов в одинаковых по объему областях пространства, но в разных его точках для изображенных орбиталей разная. Представить в графической, наглядной форме атомные орбитали в общем виде чрезвычайно сложно. Вместе с тем существуют разные способы сделать это.

Все усложняется еще больше при попытке изобразить полную волновую функцию электрона в атоме, представляющую собой произвеЭтим методом, в частности, в научной литературе представляются результаты рентгеновского исследования структуры молекул химических соединений.

дение трех функций, и ее квадрат модуля |у(г, 0, q в виде изолиний, т.е. линий, соединяющих точки с одинаковыми значениями --- (по примеру широко известных географических карт). dV

В квантовой химии также иногда используются графики орбиталей в виде замкнутых поверхностей, внутри которых заключено определенное количество (чаще всего 90%) полного электронного заряда. На рисунке 8.23 изображены орбитали для разных состояний электрона в атоме водорода. Обращает на себя внимание тот факт, что орби-

Рис. 8.23.

тали не касаются нулевой точки (положения ядра). Это происходит от того, что в этой области из-за радиальной части волновой функции плотность вероятности обнаружить электрон очень мала (практически нулевая вероятность нахождения электрона в ядре).

Уже для водородоподобных атомов, не говоря о более сложных системах, атомные орбитали оказываются значительно более сложными. К сожалению, получить точные аналитические решения для таких случаев не представляется возможным. Поэтому в квантовой химии используются разного рода модификации (приближения), более-менее приемлемо описывающие ту или иную систему, ту или иную область атома. Например, в показатель степени экспоненты, характеризующей радиальную часть волновой функции, вводится некоторый постоянный множитель, описывающий сжатие-расширение атома (множитель Слейтера). Иногда для радиальной функции используется не одна, а сумма двух или нескольких экспонент, каждая из которых по отдельности более точно описывает распределение электронной плотности вблизи ядра и вдали от него. Эти и другие эмпирические модификации решения для разных атомов рассматриваются в квантово-химических приложениях.

  • Для тяжелых атомов вероятность нахождения электрона внутри ядра становится значительной. Именно она определяет ядерное превращение, называемое К-захватом - захватом ядром электрона К-оболочки, в результате которого протон превращается в нейтрон, и заряд ядра меняется.