Теплоёмкость и другие характеристики вольфрама, и где он используется. Вольфрам металл

ОПРЕДЕЛЕНИЕ

Вольфрам - семьдесят четвертый элемент Периодической таблицы. Обозначение - W от латинского «wolframium». Расположен в шестом периоде, VIB группе. Относится к металлам. Заряд ядра равен 74.

По распространенности в земной коре вольфрам уступает хрому, но превосходит молибден. Природные соединения вольфрама в большинстве случаев представляют собой вольфраматы - соли вольфрамовой кислоты H 2 WO 4 . Так, важнейшая вольфрамовая руда - вольфрамит - состоит из вольфраматов железа и марганца. Часто встречается также минерал шеелит CaWO 4 .

Вольфрам - тяжелый белый металл (рис. 1) плотностью 19,3 г/см 3 . Его температура плавления (около 3400 o С), выше, чем температура плавления всех других металлов. Вольфрам можно сваривать и вытягивать в тонкие нити.

Рис. 1. Вольфрам. Внешний вид.

Атомная и молекулярная масса вольфрама

ОПРЕДЕЛЕНИЕ

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии вольфрам существует в виде одноатомных молекул W, значения его атомной и молекулярной масс совпадают. Они равны 183,84.

Изотопы вольфрама

Известно, что в природе вольфрам может находиться в виде пяти стабильных изотопов 180 W, 182 W, 183 W, 184 W и 186 W.Их массовые числа равны 180, 182, 183, 184 и 186 соответственно. Ядро атома изотопа вольфрама 180 W содержит семьдесят четыре протона и сто шесть нейтронов, а остальные отличаются от него только числом нейтронов.

Существуют искусственные нестабильные изотопы вольфрама с массовыми числами от 158-ми до 192-х, а также одиннадцать изомерных состояния ядер.

Ионы вольфрама

На внешнем энергетическом уровне атома вольфрама имеется шесть электронов, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 14 5s 2 5р 6 5d 4 6s 2 .

В результате химического взаимодействия вольфрам отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

W o -2e → W 2+ ;

W o -3e → W 3+ ;

W o -4e → W 4+ ;

W o -5e → W 5+ ;

W o -6e → W 6+ .

Молекула и атом вольфрама

В свободном состоянии вольфрам существует в виде одноатомных молекул W. Приведем некоторые свойства, характеризующие атом и молекулу вольфрама:

Сплавы вольфрама

Большая часть добываемого вольфрама расходуется в металлургии для приготовления специальных сталей и сплавов. Быстрорежущая инструментальная сталь содержит до 20% вольфрама и обладает способностью самозакаливаться. Такая сталь не теряет своей твердости даже при нагревании докрасна.

Кроме быстрорежущих широко применяются другие вольфрамовые и хромовольфрамовые стали. Например, сталь, содержащая от 1 до 6% вольфрама и до 2% хрома, применяется для изготовления пил, фрез, штампов.

Как самый тугоплавкий металл вольфрам входит в состав ряда жаропрочных сплавов. В частности, его сплавы с кобальтом и хромом - стеллиты - обладают высокими твердостью, износоустойчивостью, жаростойкостью. Сплавы вольфрама с медью сочетают в себе высокие электрическую проводимость, теплопроводность и износоустойчивость. Они применяются для изготовления рабочих частей рубильников, выключателей, электродов для точечной сварки.

Примеры решения задач

ПРИМЕР 1

Вольфрам — это тусклый серебристый металл с самой высокой точкой плавления любого чистого металла.

Также известный как Вольфрам, из которого элемент принимает свой символ, W, вольфрам более устойчив к разрыву, чем алмаз, и намного тверже, чем сталь. Это уникальные свойства тугоплавких металлов — ее прочность и способность выдерживать высокие температуры — что делает его идеальным для многих коммерческих и промышленных применений.

Вольфрам в основном извлекается из двух видов минералов: вольфрамита и шеелита. Однако рециркуляция вольфрама также составляет около 30% мирового предложения. Китай является крупнейшим в мире производителем металла, обеспечивающим более 80% мирового предложения.

После обработки и разделения вольфрамовой руды производится химическая форма, паравольфрамат аммония (APT). APT можно нагревать водородом с образованием оксида вольфрама или реагировать с углеродом при температурах выше 1925 ° F (1050 ° C) для получения вольфрамового металла.

Приложения:

Первичное применение вольфрама на протяжении более 100 лет было в качестве нити накаливания ламп накаливания. Приготовленный небольшими количествами калий-алюмосиликат, вольфрамовый порошок спекается при высокой температуре, чтобы получить проволочную нить, которая находится в центре лампочек, которые светят миллионы домов по всему миру.

Благодаря способности вольфрама сохранять свою форму при высоких температурах вольфрамовые нити теперь также используются в различных бытовых применениях, включая лампы, прожекторы, нагревательные элементы в электрических печах, микроволновые печи, рентгеновские трубки и электронно-лучевые трубки (ЭЛТ) в компьютерных мониторах и телевизорах.

Толерантность металла к интенсивному нагреву также делает его идеальным для термопар и электрических контактов в электродуговых печах и сварочном оборудовании. Применения, требующие концентрированной массы или веса, такие как противовесы, рыболовные грузики и дартс, часто используют вольфрам из-за его плотности.

Карбид вольфрама:

Карбид вольфрама получают либо путем соединения одного атома вольфрама с одним атомом углерода (представленным химическим символом WC), либо двумя атомами вольфрама с одним атомом углерода (W2C). Это делается путем нагрева вольфрамового порошка углеродом при температурах от 2550 ° F до 2900 ° F (1400 ° C до 1600 ° C) в потоке газообразного водорода.

Согласно шкале твердости Моха (мера способности одного материала царапать другой), карбид вольфрама имеет твердость 9,5, только немного ниже, чем алмаз. По этой причине это твердое соединение спекается, процесс, который требует прессования и нагрева порошковой формы при высоких температурах, для изготовления изделий, используемых при механической обработке и резке. Результатом этого являются материалы, которые могут работать в условиях высокой температуры и напряжения, таких как сверла, токарные инструменты, фрезы и бронебойные боеприпасы.

Цементированный карбид производится с использованием комбинации карбида вольфрама и порошка кобальта и используется для изготовления износостойких инструментов, таких как используемые в горнодобывающей промышленности.

Туннельно-расточной станок, который использовался для копания туннеля канала, связывающего Великобританию с Европой, фактически был оснащен почти 100 цементированными карбидными кончиками.

Вольфрамовые сплавы:

Вольфрамовый металл можно комбинировать с другими металлами, чтобы повысить их прочность и устойчивость к износу и коррозии. Стальные сплавы часто содержат вольфрам для этих полезных свойств. Многие высокоскоростные стали, используемые в режущих и обрабатывающих инструментах, таких как пильные диски, содержат около 18 процентов вольфрама.

Сплавы из вольфрамовой стали также используются при производстве сопел ракетных двигателей, которые должны обладать высокими термостойкими свойствами. Другие вольфрамовые сплавы включают стеллит (кобальт, хром и вольфрам), который используется в подшипниках и поршнях из-за его долговечности и износостойкости, а Hevimet, который производится путем спекания порошка вольфрамового сплава и используется в боеприпасах, дротильных бочках, и гольф-клубы.

Суперсплавы из кобальта, железа или никеля, наряду с вольфрамом, могут использоваться для производства лопаток турбины для самолетов.

Химия

Элемент № 74 вольфрам причисляют обычно к редким металлам: его содержание в земной коре оценивается в 0,0055%; его нет в морской воде, его не удалось обнаружить в солнечном спектре. Однако по популярности онможет поспорить со многими отнюдь не редкими металлами, а его минералы были известны задолго до открытия самого элемента. Так, еще в XVII в. во многих европейских странах знали «вольфрам» и «тунгстен» - так называли тогда наиболее распространенные минералы вольфрама - вольфрамит и шеелит. А элементарный вольфрам был открыт в последней четверти XVIII в .

Вольфрамовая руда

Очень скоро этот металл получил практическое значение - как легирующая добавка. А после Всемирной выставки 1900 г. в Париже, на которой демонстрировались образцы быстрорежущей вольфрамовой стали, элемент № 74 стали применять металлурги во всех более или менее промышленно развитых странах. Главная особенность вольфрама как легирующей добавки заключается в том, что он придает стали красностойкость - позволяет сохранить твердость и прочность при высокой температуре. Более того, большинство сталей при охлаждении на воздухе (после выдержки при температуре, близкой к температуре красного каления) теряют твердость. А вольфрамовые - нет.
Инструмент, изготовленный из вольфрамовой стали, выдерживает огромные скорости самых интенсивных процессов металлообработки. Скорость резания таким инструментом измеряется десятками метров в секунду.
Современные быстрорежущие стали содержат до 18% вольфрама (или вольфрама с молибденом), 2-7% хрома и небольшое количество кобальта. Они сохраняют твердость при 700-800° С, в то время как обычная сталь начинает размягчаться при нагреве всего до 200° С. Еще большей твердостью обладают «стеллиты» - сплавы
вольфрам а с хромом и кобальтом (без железа) и особенно карбиды вольфрама - его соединения с углеродом. Сплав «видна» (карбид вольфрама, 5-15% кобальта и небольшая примесь карбида титана) в 1,3 раза тверже обычной вольфрамовой стали и сохраняет твердость до 1000- 1100° С. Резцами из этого сплава можно снимать за минуту до 1500-2000 м железной стружки. Ими можно быстро и точно обрабатывать «капризные» материалы: бронзу и фарфор, стекло и эбонит; при этом сам инструмент изнашивается совсем незначительно.
В начале XX в. вольфрамовую нить стали применять в электрических лампочках: она позволяет доводить накал до 2200° С и обладает большой светоотдачей. И в этом качестве вольфрам совершенно незаменим до наших дней. Очевидно, поэтому электрическая лампочка названа в одной популярной песне «глазком вольфрамовым».

Минералы и руды вольфрама

Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисыо вольфрама WO 3 и окислами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Наиболее распространенный минерал, вольфрамит, представляет собой твердый раствор вольфраматов (солей вольфрамовой кислоты) железа и марганца (mFeW0 4 *nMnW0 4). Этот раствор - тяжелые и твердые кристаллы коричневого или черного цвета, в зависимости от того, какое соединение преобладает в их составе. Если больше побнерита (соединения марганца), кристаллы черные, если же преобладает железосодержащий ферберит - коричневые. Вольфрамит парамагнитен и хорошо проводит электрический ток.
Из других минералов вольфрама промышленное значение имеет шеелит - вольфрамат кальция CaW04. Он образует блестящие, как стекло, кристаллы светло-желтого, иногда почти белого цвета. Шеелит немагнитен, но он обладает другой характерной особенностью - способностью к люминесценции. Если его осветить ультрафиолетовыми лучами, он флуоресцирует в темноте ярко-синим цветом. Примесь молибдена меняет окраску свечения шеелита: она становится бледно-синей, а иногда даже кремовой. Это свойство шеелита, используемое в геологической разведке, служит поисковым признаком, позволяющим обнаружить залежи минерала.
Месторождения вольфрамовых руд теологически связаны с областями распространения гранитов . Крупнейшие зарубежные месторождения вольфрамита и шеелита находятся в Китае, Бирме, США, Боливии и Португалии. Наша страна тоже располагает значительными запасами минералов вольфрама, главные их месторождения находятся на Урале, Кавказе и в Забайкалье.
Крупные кристаллы вольфрамита или шеелита - большая редкость. Обычно вольфрамовые минералы лишь вкраплены в древние гранитные породы - средняя концентрация вольфрама в итоге оказывается в лучшем случае 1-2%. Поэтому извлечь вольфрам из руд очень трудно.


Как получают вольфрам

Первая стадия - обогащение руды, отделение ценных компонентов от основной массы - пустой породы. Методы обогащения - обычные для тяжелых руд и металлов: измельчение и флотация с последующими операциями - магнитной сепарацией (для вольфрамитиых руд) и окислительным обжигом.
Полученный концентрат чаще всего спекают с избытком соды, чтобы перевести вольфрам в растворимое соединение - вольфрамат натрия. Другой способ получения этого вещества - выщелачивание; вольфрам извлекают содовым раствором под давлением и при повышенной температуре (процесс идет в автоклаве) с последующей нейтрализацией и осаждением в виде искусственного шеелита, т. е. вольфрамата кальция. Стремление получить именно вольфрамат объясняется тем, что из него сравнительно просто, всего в две стадии:
CaW0 4 → H 2 W0 4 или (NH 4) 2 W0 4 → WO 3 , можно выделить очищенную от большей части примесей окись вольфрама.
Есть еще один способ получения окиси вольфрама - через хлориды. Вольфрамовый концентрат при повышенной температуре обрабатывают газообразным хлором. Образовавшиеся хлориды вольфрама довольно легко отделить от хлоридов других металлов методом возгонки, используя разницу температур, при которых эти вещества переходят в парообразное состояние. Полученные хлориды вольфрама можно превратить в окисел, а можно пустить непосредственно на переработку в элементарный металл.


Превращение окислов или хлоридов в металл - следующая стадия производства вольфрама. Лучший восстановитель окиси вольфрама - водород. При восстановлении водородом получается наиболее чистый металлический вольфрам. Процесс восстановления происходит в трубчатых печах, нагретых таким образом, что по мере продвижения по трубе «лодочка» с W0 3 проходит через несколько температурных зон. Навстречу ей идет поток сухого водорода. Восстановление происходит и в «холодных» (450-600° С) и в «горячих» (750-1100° С) зонах; в «холодных» - до низшего окисла W0 2 , дальше - до элементарного металла. В зависимости от температуры и длительности реакции в «горячей» зоне меняются чистота и размеры зерен выделяющегося на стенках «лодочки» порошкообразного вольфрама.
Восстановление может идти не только под действием водорода. На практике часто используется уголь. Применение твердого восстановителя несколько упрощает производство, однако в этом случае требуется более высокая температура - до 1300-1400° С. Кроме того, уголь и примеси, которые он всегда содержит, вступают в реакции с вольфрамом, образуя карбиды и другие соединения. Это приводит к загрязнению металла. Между тем электротехнике нужен весьма чистый вольфрам. Всего 0,1% железа делает вольфрам хрупким и малопригодным для изготовления тончайшей проволоки.
Получение вольфрама из хлоридов основано на процессе пиролиза. Вольфрам образует с хлором несколько соединений. С помощью избытка хлора все их можно перевести в высший хлорид - WCl 6 , который разлагается на вольфрам и хлор при 1600° С. В присутствии водорода этот процесс идет уже при 1000° С.
Так получают металлический вольфрам, но не компактный, а в виде порошка, который затем прессуют в токе водорода при высокой температуре. На первой стадии прессования (при нагреве до 1100-1300° С) образуется пористый ломкий слиток. Прессование продолжается при еще более высокой температуре, едва не достигающей под конец температуры плавления вольфрама. В этих условиях металл постепенно становится сплошным, приобретает волокнистую структуру, а с ней - пластичность и ковкость.

Главные свойства

Вольфрам отличается от всех остальных металлов особой тяжестью, твердостью и тугоплавкостью. Давно известно выражение: «Тяжелый, как свинец». Правильнее было бы говорить: «Тяжелый, как вольфрам». Плотность вольфрама почти вдвое больше, чем свинца, точнее - в 1,7 раза. При этом атомная масса его несколько ниже: 184 против 207.


По тугоплавкости и твердости вольфрам и его сплавы занимают высшие места среди металлов. Технически чистый вольфрам плавится при 3410° С, а кипит лишь при 6690° С. Такая температура - на поверхности Солнца!
А выглядит «король тугоплавкости» довольно заурядно. Цвет вольфрама в значительной мере зависит от способа получения. Сплавленный вольфрам - блестящий серый металл, больше всего напоминающий платину. Вольфрамовый порошок - серый, темно-серый и даже черный (чем мельче зернение, тем темнее).

Химическая активность

Природный вольфрам состоит из пяти стабильных изотопов с массовыми числами от 180 до 186. Кроме того, в атомных реакторах в результате различных ядерных реакций образуются еще 8 радиоактивных изотопов вольфрама с массовыми числами от 176 до 188; все они сравнительно недолговечны: их периоды полураспада - от нескольких часов до нескольких месяцев.
Семьдесят четыре электрона атома вольфрама расположены вокруг ядра таким образом, что шесть из них находятся на внешних орбитах и могут быть отделены сравнительно легко. Поэтому максимальная валентность вольфрама равна шести. Однако строение этих внешних орбит особое - они состоят как бы из двух «ярусов»: четыре электрона принадлежат предпоследнему уровню -d, который оказывается, таким образом, заполненным меньше чем наполовину. (Известно, что число электронов в заполненном уровне d равно десяти.) Эти четыре электрона (очевидно, неспарепные) способны легко образовывать химическую связь. Что же касается двух «самых наружных» электронов, то их оторвать совсем легко.
Именно особенностями строения электронной оболочки объясняется высокая химическая активность вольфрама. В соединениях он бывает не только шестивалентным, но и пяти-, четырех-, трех-, двух- и нульвалентным. (Неизвестны лишь соединения одновалентного вольфрама).
Активность вольфрама проявляется в том, что он вступает в реакции с подавляющим болишинстом элементов, образуя множество простых и сложных соединений. Даже в сплавах вольфрам часто оказывается химически связанным. А с кислородом и другими окислителями он взаимодействует легче, чем большинство тяжелых металлов.
Реакция вольфрама с кислородом идет при нагревании, особенно легко - в присутствии паров воды. Если вольфрам нагревать на воздухе, то при 400-500° С на поверхности металла образуется устойчивый низший окисел W0 2 ; вся поверхность затягивается коричневой пленкой. При более высокой температуре сначала получается промежуточный окисел W 4 O 11 синего цвета, а затем лимонножелтая трехокись вольфрама W0 3 , которая возгоняется при 923° С.


Сухой фтор соединяется с тонкоизмельченным вольфрамом уже при небольшом нагревании. При этом образуется гексафторид WF6 - вещество, которое плавится при 2,5° С и кипит при 19,5° С. Аналогичное соединение - WCl 6 - получается при реакции с хлором, но лишь при 600° С. Сине-стального цвета кристаллы WCl 6 плавятся при 275° С и кипят при 347° С. С бромом и йодом вольфрам образует малоустойчивые соединения: пента- и дибромид, тетра- и дииоднд.
При высокой температуре вольфрам соединяется с серой, селеном и теллуром, с азотом и бором, с углеродом и кремнием. Некоторые из этих соединений отличаются большой твердостью и другими замечательными свойствами.
Очень интересен карбонил W(CO) 6 . Здесь вольфрам соединен с окисью углерода и, следовательно, обладает нулевой валентностью. Карбонил вольфрама неустойчив; его получают в специальных условиях. При 0° он выделяется из соответствующего раствора в виде бесцветных кристаллов, при 50° С возгоняется, а при 100° С полностью разлагается. Но именно это соединение позволяет получить тонкие и плотные покрытия из чистого вольфрама.
Не только сам вольфрам, но и многие его соединения весьма активны. В частности, окись вольфрама WO 3 способна к полимеризации. В результате образуются так называемые изополисоединения и гетерополисоединения: молекулы последних могут содержать более 50 атомов.


Сплавы

Почти со всеми металлами вольфрам образует сплавы, однако получить их не так-то просто. Дело в том, что общепринятые методы сплавления в данном случае, как правило, неприменимы. При температуре плавления вольфрама большинство других металлов уже превращается в газы пли весьма летучие жидкости. Поэтому сплавы, содержащие вольфрам, обычно получают методами порошковой металлургии.
Во избежание окисления все операции проводят в вакууме или в атмосфере аргона. Делается это так. Сначала смесь металлических порошков прессуют, затем спекают и подвергают дуговой плавке в электрических печах. Иногда прессуют и спекают один вольфрамовый порошок, а полученную таким путем пористую заготовку пропитывают жидким расплавом другого металла: получаются так называемые псевдосплавы. Этим методом пользуются, когда нужно получить сплав вольфрама с медью и серебром.


С хромом и молибденом, ниобием и танталом вольфрам дает обычные (гомогенные) сплавы при любых соотношениях. Уже небольшие добавки вольфрама повышают твердость этих металлов и их устойчивость к окислению.
Сплавы с железом, никелем и кобальтом более сложны. Здесь, в зависимости от соотношения компонентов, образуются либо твердые растворы, либо интерметаллические соединения (химические соединения металлов), а в присутствии углерода (который всегда имеется в стали) - смешанные карбиды вольфрама и железа, придающие металлу еще большую твердость.
Очень сложные соединения образуются при сплавлении вольфрама с алюминием, бериллием и титаном: в них на один атом вольфрама приходится от 2 до 12 атомов легкого металла. Эти сплавы отличаются жаропрочностью и устойчивостью к окислению при высокой температуре.
На практике чаще всего применяются сплавы вольфрама не с одним каким-либо металлом, а с несколькими. Таковы, в частности, кислотостойкие сплавы вольфрама с хромом и кобальтом или никелем (амалой); из них делают хирургические инструменты. Лучшие марки магнитной стали содержат вольфрам, железо и кобальт. А в специальных жаропрочных сплавах, кроме вольфрама, имеются хром, никель и алюминий.
Из всех сплавов вольфрама наибольшее значение приобрели вольфрамсодержащие стали. Они устойчивы к истиранию, не дают трещин, сохраняют твердость вплоть до температуры красного каления. Инструмент из них не только позволяет резко интенсифицировать процессы металлообработки (скорость обработки металлических изделий повышается в 10-15 раз), но и служит намного дольше, чем тот же инструмент из другой стали.
Вольфрамовые сплавы не только жаропрочны, но и жаростойки. Они не корродируют при высокой температуре под действием воздуха, влаги и различных химических реагентов. В частности, 10% вольфрама, введенного в никель, достаточно, чтобы повысить коррозионную устойчивость последнего в 12 раз! А карбиды вольфрама с добавкой карбидов тантала и титана, сцементированные кобальтом, устойчивы к действию многих кислот - азотной, серной и соляной - даже при кипячении. Им опасна только смесь плавиковой и азотной кислот.

Вольфрам - это химический элемент периодической системы Менделеева, который принадлежит к VI группе. В природе вольфрам встречается в виде смеси из пяти изотопов. В своем обычном виде и при обычных условиях он представляет собой твердый металл серебристо-серого цвета. Он также является самым тугоплавким из всех металлов.

Основные свойства вольфрама

Вольфрам - это металл, обладающий замечательными физическими и химическими свойствами. Практически во всех отраслях современного производства применяется вольфрам. Формула его обычно выражается в виде обозначения оксида металла - WO 3 . Вольфрам считается самым тугоплавким из металлов. Предполагается, что лишь сиборгий может быть еще более тугоплавок. Но точно пока этого утверждать нельзя, так как сиборгий имеет очень малое время существования.

Этот металл имеет особые физические и химические свойства. Вольфрам имеет плотность 19300 кг/м 3 , температура плавления его составляет 3410 °С. По этому параметру он занимает второе место после углерода - графита или алмаза. В природе вольфрам встречается в виде пяти стабильных изотопов. Их массовые числа находятся в интервале от 180 до 186. Вольфрам обладает 6-й валентностью, а в соединениях она может составлять 0, 2, 3, 4 и 5. Металл также имеет достаточно высокий уровень теплопроводности. Для вольфрама этот показатель составляет 163 Вт/(м*град). По этому свойству он превышает даже такие соединения, как сплавы алюминия. Масса вольфрама обусловлена его плотностью, которая равна 19кг/м 3 . Степень окисления вольфрама колеблется от +2 до +6. В высших степенях своего окисления металл имеет кислотные свойства, а в низших - основные.

При этом сплавы низших соединений вольфрама считаются неустойчивыми. Самыми стойкими являются соединения со степенью +6. Они проявляют и наиболее характерные для металла химические свойства. Вольфрам имеет свойство легко образовывать комплексы. Но металлический вольфрам обычно является очень стойким. Он начинает взаимодействовать с кислородом лишь при температуре +400 °С. Кристаллическая решетка вольфрама относится к типу кубических объемноцентрированных.

Взаимодействие с другими химическими веществами

Если вольфрам смешать с сухим фтором, то можно получить соединение под названием "гексафторид", который плавится уже при температуре 2,5 °С, а закипает при 19,5 °С. Похожее вещество получают при соединении вольфрама с хлором. Но для такой реакции необходима достаточно высокая температура - порядка 600 °С. Однако вещество легко противостоит разрушительному действию воды и практически не подвергается изменениям на холоде. Вольфрам - металл, который без кислорода не производит реакции растворения в щелочах. Однако он легко растворяется в смеси HNO 3 и HF. Самые главные из химических соединений вольфрама - это его трехокись WO 3 , Н 2 WO 4 - вольфрамовая кислота, а также ее производные - соли вольфраматы.

Можно рассмотреть некоторые химические свойства вольфрама с уравнениями реакций. Например, формула WO 3 + 3H 2 = W+3H 2 O. В ней металл вольфрам восстанавливается из оксида, проявляется его свойство взаимодействия с водородом. Это уравнение отражает процесс получения вольфрама из его триоксида. Следующей формулой обозначается такое свойство, как практическая нерастворимость вольфрама в кислотах: W + 2HNO3 + 6HF = WF6 + 2NO + 4H2O. Одним из наиболее примечательных веществ, содержащих вольфрам, считается карбонил. Из него получают плотные и ультратонкие покрытия из чистого вольфрама.

История открытия

Вольфрам - металл, получивший свое название из латинского языка. В переводе это слово означает «волчья пена». Такое необычное название появилось из-за поведения металла. Сопровождая добытую оловянную руду, вольфрам мешал выделению олова. Из-за него в процессе выплавки образовывались только шлаки. Об этом металле говорили, что он «поедает олово, как волк ест овцу». Для многих интересно, кто открыл химический элемент вольфрам?

Это научное открытие было сделано одновременно в двух местах разными учеными, независимо друг от друга. В 1781 году химик из Швеции Шееле получил так называемый «тяжелый камень», проводя опыты с азотной кислотой и шеелитом. В 1783 году братья-химики из Испании по фамилии Элюар также сообщил об открытии нового элемента. Точнее, ими был открыт оксид вольфрама, растворявшийся в аммиаке.

Сплавы с другими металлами

В настоящее время различают однофазные и многофазные вольфрамовые сплавы. Они содержат один или несколько посторонних элементов. Самое известное соединение - это сплав вольфрама и молибдена. Добавление молибдена придает вольфраму прочность при его растяжении. Также к категории однофазных сплавов принадлежат соединения вольфрама с титаном, гафнием, цирконием. Самую большую пластичность вольфраму придает рений. Однако практически применять такой сплав - довольно трудоемкий процесс, так как рений очень тяжело добыть.

Так как вольфрам является одним из самых тугоплавких материалов, то получать вольфрамовые сплавы - непростая задача. Когда этот металл только начинает закипать, другие уже переходят в жидкость или состояние газа. Но современные ученые умеют получать сплавы при помощи процесса электролиза. Сплавы, содержащие вольфрам, никель и кобальт, используются для нанесения защитного слоя на непрочные материалы.

В современной металлургической промышленности также получают сплавы, используя вольфрамовый порошок. Для его создания необходимы особенные условия, включая создание вакуумной обстановки. Из-за некоторых особенностей взаимодействия вольфрама с другими элементами металлурги предпочитают создавать сплавы не двухфазной характеристики, а с применением 3, 4 и более составляющих. Эти сплавы особенно прочны, но при четком соблюдении формул. При малейших отклонениях процентных составляющих сплав может получиться хрупким и непригодным к использованию.

Вольфрам - элемент, применяющийся в технике

Из этого металла изготавливают нити накаливания обыкновенных лампочек. А также трубки для рентгеновских аппаратов, составляющие вакуумных печей, которые должны использоваться при крайне высоких температурах. Сталь, в состав которой входит вольфрам, имеет очень высокий уровень прочности. Такие сплавы используются для изготовления инструментов в самых различных областях: для бурения скважин, в медицине, машиностроении.

Главное преимущество соединения стали и вольфрама - износоустойчивость, маловероятность повреждений. Самый известный в строительстве вольфрамовый сплав носит название «победит». Также этот элемент широко используется в химической промышленности. С его добавлением создают краски, пигменты. Особенно широкое применение в этой сфере получил оксид вольфрама 6. Его применяют для изготовления карбидов и галогенидов вольфрама. Другое название этого вещества - триоксид вольфрама. 6 используется как желтый пигмент в красках для керамики и изделий из стекла.

Что такое тяжелые сплавы?

Все сплавы на основе вольфрама, которые обладают высоким показателем плотности, называют тяжелыми. Их получают только при помощи методов порошковой металлургии. Вольфрам всегда является основой тяжелых сплавов, где его содержание может составлять до 98 %. Кроме этого металла, в тяжелые сплавы добавляется никель, медь и железо. Однако в них могут входить и хром, серебро, кобальт, молибден. Самую большую популярность получили сплавы ВМЖ (вольфрам - никель - железо) и ВНМ (вольфрам - никель - медь). Высокий уровень плотности таких сплавов позволяет им поглощать опасное гамма-излучение. Из них изготавливают маховики колес, электрические контакты, роторы для гироскопов.

Карбид вольфрама

Около половины всего вольфрама применяется для изготовления прочных металлов, особенно вольфрамового карбида, который имеет температуру плавления 2770 С. Карбид вольфрама представляет собой химическое соединение, в котором содержится равное количество атомов углерода и вольфрама. Этот сплав имеет особые химические свойства. Вольфрам придает ему такую прочность, что по этому показателю он превосходит сталь в два раза.

Карбид вольфрама широко используется в промышленности. Из него изготавливают режущие предметы, которые должны быть очень устойчивы к высоким температурам и истиранию. Также из этого элемента изготавливают:

  • Детали самолетов, двигатели автомобилей.
  • Детали для космических кораблей.
  • Медицинские хирургические инструменты, которые применяются в сфере полостной хирургии. Такие инструменты дороже обычной медицинской стали, однако они более производительны.
  • Ювелирные изделия, особенно обручальные кольца. Такая популярность вольфрама связана с его прочностью, которая для венчающихся символизирует прочность взаимоотношений, а также внешним видом. Характеристики вольфрама в отполированном виде таковы, что он в течение очень длительного времени сохраняет зеркальный, блестящий вид.
  • Шарики для шариковых ручек класса люкс.

Победит - сплав вольфрама

Приблизительно во второй половине 1920-х годов во многих странах начали выпускаться сплавы для режущих инструментов, которые получали из карбидов вольфрама и металлического кобальта. В Германии такой сплав назывался видиа, в Штатах - карбола. В Советском Союзе такой сплав получил название «победит». Эти сплавы оказались прекрасными для обработки чугунной продукции. Победит является металлокерамическим сплавом с чрезвычайно высоким уровнем прочности. Он изготавливается в виде пластинок различных форм и размеров.

Процесс изготовления победита сводится к следующему: берется порошок карбида вольфрама, мелкий порошок никеля или кобальта, и все перемешивается и прессуется в специальных формах. Спрессованные таким образом пластины подвергаются дальнейшей температурной обработке. Это дает очень твердый сплав. Эти пластины используются не только для резки чугуна, но и для изготовления бурильных инструментов. Пластинки из победита напаиваются на бурильное оборудование при помощи меди.

Распространенность вольфрама в природе

Этот металл очень мало распространен в окружающей среде. После всех элементов он занимает 57-е место и содержится в виде кларка вольфрама. Также металл образует минералы - шеелит и вольфрамит. Вольфрам мигрирует в подземные воды либо в виде собственного иона, либо в виде всевозможных соединений. Но его наибольшая концентрация в подземных водах ничтожно мала. Она составляет сотые доли мг/л и практически не меняет их химические свойства. Вольфрам также может попадать в природные водоемы из стоков заводов и фабрик.

Влияние на человеческий организм

Вольфрам практически не поступает в организм с водой или пищей. Может существовать опасность вдыхания вольфрамовых частиц вместе с воздухом на производстве. Однако, несмотря на принадлежность к категории тяжелых металлов, вольфрам не токсичен. Отравления вольфрамом случаются лишь у тех, кто связан с вольфрамовым производством. При этом степень влияния металла на организм бывает разной. Например, вольфрамовый порошок, карбид вольфрама и такое вещество, как ангидрит вольфрамовой кислоты, могут вызывать поражение легких. Его главные симптомы - общее недомогание, лихорадка. Более сильные симптомы возникают при отравлении сплавами вольфрама. Это происходит при вдыхании пыли сплавов и приводит к бронхитам, пневмосклерозу.

Металлический вольфрам, попадая внутрь человеческого организма, не всасывается в кишечнике и постепенно выводится. Большую опасность могут представлять вольфрамовые соединения, относящиеся к растворимым. Они откладываются в селезенке, костях и коже. При длительном воздействии вольфрамовых соединений могут возникать такие симптомы, как ломкость ногтей, шелушение кожи, различного рода дерматиты.

Запасы вольфрама в различных странах

Самые большие ресурсы вольфрама находятся в России, Канаде и Китае. По прогнозам ученых, на отечественных территориях располагается около 943 тысяч тонн этого металла. Если верить этим оценкам, то подавляющая часть запасов расположена в Южной Сибири и на Дальнем Востоке. Очень незначительной является доля разведанных ресурсов - она составляет всего лишь порядка 7 %.

По количеству разведанных залежей вольфрама Россия уступает лишь Китаю. Большая их часть расположена в районах Кабардино-Балкарии и Бурятии. Но в этих месторождениях добывается не чистый вольфрам, а его руды, содержащие также молибден, золото, висмут, теллур, скандий и другие вещества. Две трети получаемых объемов вольфрама из разведанных источников заключены в труднообогатимых рудах, где главным вольфрамосодержащим минералом является шеелит. На долю легкообогатимых руд приходится всего лишь треть всей добычи. Характеристики вольфрама, добываемого на территории России, ниже, чем за рубежом. Руды содержат большой процент триоксида вольфрама. В России очень мало россыпных месторождений металла. Вольфрамовые пески также являются низкокачественными, с большим количеством оксидов.

Вольфрам в экономике

Глобальное производство вольфрама начало свой рост примерно с 2009 года, когда стала восстанавливаться азиатская промышленность. Крупнейшим производителем вольфрама остается Китай. Например, в 2013 году на долю производства этой страны приходился 81 % от мирового предложения. Около 12 % спроса на вольфрам связано с производством осветительных приборов. По прогнозам экспертов, использование вольфрама в этой сфере будет сокращаться на фоне применения светодиодных и люминесцентных ламп как в бытовых условиях, так и на производстве.

Считается, что будет расти спрос на вольфрам в сфере производства электронной техники. Высокая износостойкость вольфрама и его способность выдерживать электричество делают этот металл наиболее подходящим для производства регуляторов напряжения. Однако по объему этот спрос пока остается довольно незначительным, и считается, что к 2018 году он вырастет лишь на 2 %. Однако согласно прогнозам ученых, в ближайшее время должен произойти рост спроса на цементированный карбид. Это связано с ростом автомобильного производства в США, Китае, Европе, а также увеличением горнодобывающей промышленности. Считается, что к 2018 году спрос на вольфрам увеличится на 3,6 %.

Вольфрам долгое время не находил практического применения. И только в конце XIX века замечательные свойства этого металла стали использоваться в промышленности. В настоящее время около 80 процентов добываемого вольфрама применяется в вольфрамовых сталях, около 15 процентов вольфрама используют для производства твердых сплавов. Важной областью применения чистого вольфрама и чистых сплавов из него является электротехническая промышленность, где он используется при изготовлении нитей накаливания электрических ламп, для деталей радиоламп и рентгеновских трубок, автомобильного и тракторного электрооборудования, электродов для контактной, атомно-водородной и аргоно-дуговой сварки, нагревателей для электропечей и др. Соединения вольфрама нашли применение в производстве огнестойких, водоустойчивых и утяжеленных тканей, как катализаторы в химической промышленности.
Ценность вольфрама особенно повышает его способность образовывать сплавы с различными металлами железом, никелем, хромом, кобальтом, молибденом, которые в различных количествах входят в состав стали. Вольфрам, добавленный в небольших количествах к стали, вступает в реакции с содержащимися в ней вредными примесями серы, фосфора, мышьяка и нейтрализует их отрицательное влияние. В результате сталь с добавкой вольфрама получает высокую твердость, тугоплавкость, упругость и устойчивость против кислот. Всем известно высокое качество клинков из дамасской стали, в которой содержится несколько процентов примеси вольфрама. Еще в. 1882 году вольфрам стали использовать при изготовлении пуль. В орудийной стали, бронебойных снарядах также содержится вольфрам. Сталь с присадкой вольфрама идет на изготовление прочных рессор автомобилей и железнодорожных вагонов, пружин и ответственных деталей различных механизмов. Рельсы, изготовленные из вольфрамовой стали, выдерживают намного большие нагрузки, и срок их службы значительно дольше, чем рельсов из обычных сортов стали. Замечательным свойством стали с добавкой 918 процентов вольфрама является ее способность к самозакаливанию, то есть при увеличении нагрузок и температуры эта сталь становится еще прочнее. Это свойство явилось основанием для изготовления целой серии инструментов из так называемой «быстрорежущей инструментальной стали». Применение резцов из нее позволило в свое время в несколько раз увеличить скорость обработки деталей на металлорежущих станках.
И все же инструменты, изготовленные из быстрорежущей стали, по скорости резания в 35 раз уступают инструментам из твердых сплавов. К их числу относятся соединения вольфрама с углеродом (карбиды) и бором (бориды). Эти сплавы по твердости близки к алмазам. Если условная твердость самого твердого из всех веществ алмаза выражается 10 баллами, то твердость вольфрамо-карбида (вокара) 9,8. К числу этих сплавов относится и широко известный победит сплав углерода с вольфрамом и добавкой кобальта. Сам победит вышел из употребления, но это название сохранилось применительно к целой группе твердых сплавов. В машиностроительной промышленности из твердых сплавов изготавливают также штампы для кузнечных прессов. Они изнашиваются примерно в тысячу раз медленнее стальных.
Особенно важной и интересной областью применения вольфрама является изготовление элементов накала (нитей) электрических ламп накаливания. Для изготовления нитей электроламп используют чистый вольфрам. Свет, излучаемый раскаленной нитью вольфрама, близок к дневному. А количество света, излучаемое лампой с вольфрамовой нитью, в несколько раз превышает излучение ламп из нитей, изготовленных из других металлов (осьмия, тантала). Световое излучение (световая отдача) электроламп с вольфрамовой нитью в 10 раз выше, чем у ранее применявшихся ламп с угольной нитью. Яркость свечения, долговечность, экономичность в потреблении электроэнергии, небольшие затраты металла и простота изготовления электрических ламп с вольфрамовой нитью обеспечили им самое широкое применение при освещении.
Широкие возможности применения вольфрама обнаружились в результате открытия, сделанного известным американским физиком Робертом Уилъямсом Вудом. В одном из опытов Р. Вуд обратил внимание на то, что свечение вольфрамовой нити с торцовой части катодной трубки его конструкции продолжается и после отключения электродов от аккумулятора. Это настолько поразило его современников, что Р. Вуда стали называть чародеем. Исследования показали, что вокруг нагретой вольфрамовой нити происходит термическая диссоциация молекул водорода они распадаются на отдельные атомы. После отключения энергии атомы водорода снова соединяются в молекулы, и при этом выделяется большое количество тепловой энергии, достаточное, чтобы раскалить тонкую вольфрамовую нить и вызвать ее свечение. На этом эффекте разработан новый вид сварки металлов атомно-водородный, давший возможность сваривать различные стали, алюминий, медь, латунь в тонких, листах с получением чистого и ровного шва. Металлический вольфрам при этом используется в качестве электродов. Вольфрамовые электроды применяются также и при более широко распространенной аргонодуговой сварке.
В химической промышленности вольфрамовая проволока, очень стойкая против кислот и щелочей, применяется для изготовления сеток различных фильтров. Вольфрам нашел применение также как катализатор с его помощью изменяют скорость химических реакций в технологическом процессе. Группа вольфрамовых соединении в промышленности и лабораторных условиях используется как реактивы для определения белка и других органических и неорганических соединений.
Вольфрамовые соединения используются и в полиграфической промышленности в качестве красок (шафрановая, вольфрамовая синь, вольфрамовая желть). Пиротехники добавляют соединения вольфрама в состав горючих смесей и получают разноцветные огни ракет и фейерверков. В свето-печатании используется бумага, обработанная вольфрамитом натрия. В текстильной промышленности солью вольфрамовой кислоты вольфраматом натрия протравливают ткани при крашении. Такие ткани непромокаемы и не боятся огня. Дерево тоже становится огнестойким, если его обработать этим веществом.

Дителлурид вольфрама WTe 2 применяется для преобразования тепловой энергии в электрическую (термо-ЭДС около 57 мкВ/К).

Коэффициент температурного расширения вольфрама близок к таковому у кремния, поэтому на вольфрамовые подложки припаивают кремниевые кристаллы мощных транзисторов – чтобы избежать растрескивания этих кристаллов при нагреве.
Даже неполный перечень применения вольфрама и его соединений в промышленности дает представление о высокой ценности этого элемента. Сейчас трудно представить, как бы любой из нас смог обходиться даже в повседневной жизни без вольфрама. И конечно, возможности ого использования будут раскрываться и дальше.
Почти вся мировая вольфрамовая промышленность в период первой мировой войны была сосредоточена в Германии. Но сырье для нее вольфрамовые концентраты поставлялись из других стран. Поэтому, изолированные от поставщиков сырья, немцы вынуждены были перерабатывать шлаки, скопившиеся около оловянных плавилен (вспомним «волчью пену»!) и получали из них около 100 тонн вольфрама в год.
В это же время потребности военной промышленности в вольфраме вызвали «вольфрамовую лихорадку» во многих странах. В России поставщиками вольфрамовых руд стали Урал и Забайкалье. Стараясь нажиться па «вольфрамовой лихорадке», предприниматели не очень считались с интересами государства. Так, промышленник Толмачев, владевший Забайкальскими месторождениями Букука и Оланду, решил сдать их в аренду шведской фирме. И только своевременное вмешательство Геологического комитета предотвратило это. В условиях военного времени рудники у этого дельца были реквизированы.

Искусственный радионуклид 185 W используется в качестве радиоактивной метки при исследованиях вещества. Стабильный 184 W применяется как компонент сплавов с ураном-235, применяемых в твердофазных ядерных ракетных двигателях, поскольку это единственный из распространённых изотопов вольфрама, имеющий низкое сечение захвата тепловых нейтронов (около 2 барн).

Перед началом первой мировой войны в 1913 году в мире было произведено 8 123 тонны вольфрамового концентрата (с содержанием 60 процентов трехокиси вольфрама). Перед второй мировой войной его производство быстро увеличилось и в 1940 году составило 44 013 тонн (без Советского Союза). По данным Горного бюро США, в 1972 году мировое производство вольфрама составило около 38 400 тонн.

Применение вольфрамовых сплавов

Вольфрамовые сплавы обладают многими замечательными качествами. Так называемый тяжелый металл (из вольфрама, никеля и меди) служит для изготовления контейнеров, в которых хранят радиоактивные вещества. Его защитное действие на 40% выше, чем у свинца. Этот сплав применяют и при радиотерапии, так как он создает достаточную защиту при сравнительно небольшой толщине экрана.

Сплав карбида вольфрама с 16% кобальта настолько тверд, что может частично заменить алмаз при бурении скважин.

Псевдосплавы вольфрама с медью и серебром – превосходный материал для рубильников и выключателей электрического тока высокого напряжения: они служат в шесть раз дольше обычных медных контактов.

О применении вольфрама в волосках электроламп говорилось в начале статьи. Незаменимость вольфрама в этой области объясняется не только его тугоплавкостью, но и пластичностью. Из одного килограмма вольфрама вытягивается проволока длиной 3,5 км, т.е. этого килограмма достаточно для изготовления нитей накаливания 23 тыс. 60-ваттных лампочек. Именно благодаря этому свойству мировая электротехническая промышленность потребляет всего около 100 т вольфрама в год.

В последние годы важное практическое значение приобрели химические соединения вольфрама. В частности, фосфорно-вольфрамовая гетерополикислота применяется для производства лаков и ярких, устойчивых на свету красок. Раствор вольфрамата натрия Na 2 WO 4 придает тканям огнестойкость и водонепроницаемость, а вольфраматы щелочноземельных металлов, кадмия и редкоземельных элементов применяются при изготовлении лазеров и светящихся красок.