Взрыв советской водородной бомбы. Термоядерное оружие

30 октября 1961 года СССР произвёл взрыв самой мощной бомбы в мировой истории: 58-мегатонная водородная бомба («Царь-бомба») была взорвана на полигоне на острове Новая Земля. Никита Хрущёв пошутил, что первоначально предполагалось взорвать 100-мегатонную бомбу, но заряд уменьшили, чтобы не побить все стёкла в Москве.

Взрыв АН602 по классификации был низким воздушным взрывом сверхбольшой мощности. Результаты его впечатляли:

  • Огненный шар взрыва достиг радиуса примерно 4,6 километра. Теоретически он мог бы вырасти до поверхности земли, однако этому воспрепятствовала отражённая ударная волна, подмявшая и отбросившая шар от земли.
  • Световое излучение потенциально могло вызывать ожоги третьей степени на расстоянии до 100 километров.
  • Ионизация атмосферы стала причиной помех радиосвязи даже в сотнях километров от полигона в течение около 40 минут
  • Ощутимая сейсмическая волна, возникшая в результате взрыва, три раза обогнула земной шар.
  • Свидетели почувствовали удар и смогли описать взрыв на расстоянии тысячи километров от его центра.
  • Ядерный гриб взрыва поднялся на высоту 67 километров; диаметр его двухъярусной «шляпки» достиг (у верхнего яруса) 95 километров.
  • Звуковая волна, порождённая взрывом, докатилась до острова Диксон на расстоянии около 800 километров. Однако о каких-либо разрушениях или повреждениях сооружений даже в расположенных гораздо ближе (280 км) к полигону посёлке городского типа Амдерма и посёлке Белушья Губа источники не сообщают.
  • Радиоактивное загрязнение опытного поля радиусом 2-3 км в районе эпицентра составило не более 1 мР/час, испытатели появились на месте эпицентра через 2 часа после взрыва. Радиоактивное загрязнение практически не представляло опасности для участников испытания

Все ядерные взрывы, произведенные странами мира, в одном видео:

Создатель атомной бомбы Роберт Оппенгеймер в день первого испытания своего детища сказал: «Если бы на небе разом взошли сотни тысяч солнц, их свет мог бы сравниться с сиянием, исходившим от Верховного Господа… Я - есть Смерть, великий разрушитель миров, несущий гибель всему живому». Эти слова были цитатой из «Бхагавад Гиты», которую американский физик прочитал в оригинале.

Фотографы из Лукаут Маунтэйн стоят по пояс в пыли, поднятой ударной волной после ядерного взрыва (фото 1953 года).

Название испытания: Umbrella
Дата: 8 июня 1958 года

Мощность: 8 килотонн

Подводный ядерный взрыв был произведён в ходе операции «Hardtack». В качестве мишеней использовались списанные корабли.

Название испытания: Chama (в рамках проекта «Доминик»)
Дата: 18 октября 1962 года
Место: Остров Джонстон
Мощность: 1.59 мегатонн

Название испытания: Oak
Дата: 28 июня 1958 года
Место: Лагуна Эниветок в Тихом океане
Мощность: 8.9 мегатонн

Проект «Апшот-Нотхол», испытание «Энни». Дата: 17 марта 1953 г.; проект: Апшот-Нотхол; испытание: Энни; место: Нотхол, полигон в Неваде, сектор 4; мощность: 16 кт. (Photo: Wikicommons)

Название испытания: Castle Bravo
Дата: 1 марта 1954 года
Место: атолл Бикини
Тип взрыва: на поверхности
Мощность: 15 мегатонн

Взрыв водородной бомбы Castle Bravo был самым мощным взрывом из всех испытаний, когда либо проводимых США. Мощность взрыва оказалась намного больше первоначальных прогнозов в 4-6 мегатонн.

Название испытания: Castle Romeo
Дата: 26 марта 1954 года
Место: на барже в кратере Bravo, атолл Бикини
Тип взрыва: на поверхности
Мощность: 11 мегатонн

Мощность взрыва оказалась в 3 раза больше первоначальных прогнозов. Romeo был первым испытанием, произведенным на барже.

Проект «Доминик», испытание «Ацтек»

Название испытания: Priscilla (в рамках серии испытаний «Plumbbob»)
Дата: 1957 год

Мощность: 37 килотонн

Именно так выглядит процесс высвобождения огромного количества лучистой и тепловой энергии при атомном взрыве в воздухе над пустыней. Тут еще можно разглядеть военную технику, которая через мгновение будет уничтожена ударной волной, запечатленной в виде кроны, окружившей эпицентр взрыва. Видно как ударная волна отразилась от земной поверхности и вот-вот сольется с огненным шаром.

Название испытания: Grable (в рамках операции «Апшот-Нотхол»)
Дата: 25 мая 1953 года
Место: Ядерный полигон в Неваде
Мощность: 15 килотонн

На испытательном полигоне в пустыне Невада фотографами центра Лукаут Маунтэйн в 1953 году была сделана фотография необычного явления (кольцо огня в ядерном грибе после взрыва снаряда из ядерной пушки), природа которого долгое время занимала умы ученых.

Проект «Апшот-Нотхол», испытание «Грабл». В рамках этого испытания был произведен взрыв атомной бомбы мощностью 15 килотонн, запущенной 280-миллиметровой атомной пушкой. Испытание прошло 25 мая 1953 года на полигоне Невады. (Photo: National Nuclear Security Administration / Nevada Site Office)

Грибовидное облако, образованное в результате атомного взрыва испытания «Траки», проводимого в рамках проекта «Доминик».

Проект «Бастер», испытание «Дог».

Проект «Доминик», испытание «Йесо». Испытание: Йесо; дата:10 июня 1962 г.; проект: Доминик; место: 32 км к югу от острова Рождества; тип испытания: B-52, атмосферный, высота – 2,5 м; мощность: 3.0 мт; тип заряда: атомный. (Wikicommons)

Название испытания: YESO
Дата: 10 июня 1962 года
Место: Остров Рождества
Мощность: 3 мегатонны

Испытание «Ликорн» на территории Французской Полинезии. Изображение №1. (Pierre J./French Army)

Название испытания: «Единорог» (фр. Licorne)
Дата: 3 июля 1970 года
Место: атолл во Французской Полинезии
Мощность: 914 килотонн

Испытание «Ликорн» на территории Французской Полинезии. Изображение №2. (Photo: Pierre J./French Army)

Испытание «Ликорн» на территории Французской Полинезии. Изображение №3. (Photo: Pierre J./French Army)

Для получения хороших снимков на испытательных полигонах часто работают целые команды фотографов. На фото: испытательный ядерный взрыв в пустыне Невада. Справа видны ракетные шлейфы, с помощью которых ученые определяют характеристики ударной волны.

Испытание «Ликорн» на территории Французской Полинезии. Изображение №4. (Photo: Pierre J./French Army)

Проект «Кастл», испытание «Ромео». (Photo: zvis.com)

Проект «Хардтэк», испытание «Амбрелла». Испытание: Амбрелла; дата: 8 июня 1958 г.; проект: Хардтэк I; место: лагуна атолла Эниветок; тип испытания: подводный, глубина 45 м; мощность: 8кт; тип заряда: атомный.

Проект «Редвинг», испытание «Семинол». (Photo: Nuclear Weapons Archive)

Испытание «Рия». Атмосферное испытание атомной бомбы на территории Французской Полинезии в августе 1971 года. В рамках этого испытания, которое прошло 14 августа 1971 года, была взорвана термоядерная боеголовка под кодовым названием «Рия», мощностью 1000 кт. Взрыв произошел на территории атолла Муруроа. Этот снимок был сделан с расстояния 60 км от нулевой отметки. Photo: Pierre J.

Грибовидное облако от ядерного взрыва над Хиросимой (слева) и Нагасаки (справа). На заключительной стадии Второй мировой войны, Соединенные Штаты нанесли 2 атомных удара по Хиросиме и Нагасаки. Первый взрыв прогремел 6 августа 1945 года, а второй – 9 августа 1945 года. Это был единственный случай, когда ядерное оружие применялось в военных целях. Согласно приказу президента Трумэна, 6 августа 1945 года американская армия сбросила ядерную бомбу «Малыш» на Хиросиму, а 9 августа последовал ядерный взрыв бомбы «Толстяк», сброшенной на Нагасаки. В течение 2-4 месяцев после ядерных взрывов в Хиросиме погибло от 90 000 до 166 000 человек, а в Нагасаки – от 60 000 до 80 000. (Photo: Wikicommons)

Проект «Апшот-Нотхол». Полигон в Неваде, 17 марта 1953 года. Взрывная волна полностью разрушила Строение №1, расположенное на расстоянии 1,05 км от нулевой отметки. Разница во времени между первым и вторым снимком составляет 21/3 секунды. Камера была помещена в защитный футляр с толщиной стенки 5 см. Единственным источником света в данном случае была ядерная вспышка. (Photo: National Nuclear Security Administration / Nevada Site Office)

Проект «Рэйнджер», 1951 год. Название испытания неизвестно. (Photo: National Nuclear Security Administration / Nevada Site Office)

Испытание «Тринити».

«Тринити» было кодовым названием первого испытания ядерного оружия. Это испытание было проведено армией Соединенных Штатов 16 июля 1945 года, на территории, расположенной приблизительно в 56 км к юго-востоку от Сокорро, штат Нью-Мексико, на ракетном полигоне «Уайт Сэндс». Для испытания использовалась плутониевая бомба имплозивного типа, получившая прозвище «Штучка». После детонации прогремел взрыв мощностью эквивалентной 20 килотоннам тротила. Дата проведения этого испытания считается началом атомной эры. (Photo: Wikicommons)

Название испытания: Mike
Дата: 31 октября 1952 года
Место: Остров Elugelab («Flora»), атолл Эневейта
Мощность: 10.4 мегатонны

Устройство, взорванное при испытании Майка и названное «колбасой», было первой настоящей «водородной» бомбой мегатонного класса. Грибовидное облако достигло высоты 41 км при диаметре 96 км.

Взрыв “MET”, осуществленный в рамках Операции “Типот”. Примечательно, что взрыв “MET” по мощности был сравним с плутониевой бомбой «Толстяк», сброшенной на Нагасаки. 15 апреля 1955 года, 22 кт. (Wikimedia)

Один из самых мощных взрывов термоядерной водородной бомбы на счету США – операция “Кастл Браво”. Мощность заряда составила 10 мегатонн. Взрыв был произведен 1 марта 1954 года на атолле Бикини, Маршалловы Острова. (Wikimedia)

Операция “Кастл Ромео” – один из самых мощных взрывов термоядреной бомбы, произведенных США. Атолл Бикини, 27 марта 1954 года, 11 мегатонн. (Wikimedia)

Взрыв “Бэйкер”, показана белая поверхность воды, потревоженной воздушной ударной волной, и верх полой колонны брызг, образовавшей полусферическое облако Вильсона. На заднем плане – берег атолла Бикини, июль 1946 года. (Wikimedia)

Взрыв американской термоядерной (водородной) бомбы “Майк” мощностью 10,4 мегатонны. 1 ноября, 1952 года. (Wikimedia)

Операция «Парник» (англ. Operation Greenhouse) - пятая серия американских ядерных испытаний и вторая из них за 1951 год. В ходе операции испытывались конструкции ядерных зарядов с использованием термоядерного синтеза для увеличения выхода энергии. Кроме того, исследовалось воздействие взрыва на сооружения, включая жилые здания, корпуса заводов и бункеры. Операция проводилась на Тихоокеанском ядерном полигоне. Все устройства были взорваны на высоких металлических вышках, имитирующих воздушный взрыв. Взрыв “Джордж”, 225 килотонн, 9 мая 1951 года. (Wikimedia)

Грибообразное облако, у которого вместо пылевой ножки водяной столб. Справа на столбе видна прореха: линкор «Арканзас» закрыл собой выброс брызг. Испытание “Бэйкер”, мощностью заряда – 23 килотонны в тротиловом эквиваленте, 25 июля 1946 года. (Wikimedia)

200-метровое облако над территорией Frenchman Flat после взрыва “MET” в рамках операции “Типот”, 15 апреля 1955 года, 22 кт. Этот снаряд имел редкую сердцевину из урана-233. (Wikimedia)

Кратер был сформирован, когда в 100 килотонн взрывной волны были взорваны под 635 футов пустыни 6 июля 1962 года, вытеснив 12 миллионов тонн земли.

Время: 0с. Расстояние: 0м. Инициация взрыва ядерного детонатора.
Время: 0.0000001c. Расстояние: 0м Температура: до 100 млн. °C. Начало и ход ядерных и термоядерных реакций в заряде. Ядерный детонатор своим взрывом создаёт условия для начала термоядерных реакций: зона термоядерного горения проходит ударной волной в веществе заряда со скоростью порядка 5000 км/с (106 - 107 м/с) Около 90% выделяющихся при реакциях нейтронов поглощается веществом бомбы, оставшиеся 10% вылетают наружу.

Время: 10−7c. Расстояние: 0м. До 80% и более энергии реагирующего вещества трансформируется и выделяется в виде мягкого рентгеновского и жёсткого УФ излучения с огромной энергией. Рентгеновское излучение формирует тепловую волну, которая нагревает бомбу, выходит наружу и начинает нагревать окружающий воздух.

Время: < 10−7c. Расстояние: 2м Температура: 30 млн.°C. Окончание реакции, начало разлёта вещества бомбы. Бомба сразу исчезает из виду и на её месте появляется яркая светящаяся сфера (огненный шар), маскирующая разлёт заряда. Скорость роста сферы на первых метрах близка к скорости света. Плотность вещества здесь за 0,01 сек падает до 1% плотности окружающего воздуха; температура за 2,6 сек падает до 7-8 тыс.°C, ~5 секунд удерживается и дальше снижается с подъёмом огненной сферы; давление через 2-3 сек падает до несколько ниже атмосферного.

Время: 1.1х10−7c. Расстояние: 10м Температура: 6 млн.°C. Расширение видимой сферы до ~10 м идёт за счёт свечения ионизованного воздуха под рентгеновским излучением ядерных реакций, а далее посредством радиационной диффузии самого нагретого воздуха. Энергия квантов излучения, покидающих термоядерный заряд такова, что их свободный пробег до захвата частицами воздуха порядка 10 м и вначале сравним с размерами сферы; фотоны быстро обегают всю сферу, усредняя её температуру и со скоростью света вылетают из неё, ионизуя всё новые слои воздуха, отсюда одинаковая температура и околосветовая скорость роста. Далее, от захвата к захвату, фотоны теряют энергию и длина их пробега сокращается, рост сферы замедляется.

Время: 1.4х10−7c. Расстояние: 16м Температура: 4 млн.°C. В целом от 10−7 до 0,08 секунд идёт 1-я фаза свечения сферы с быстрым падением температуры и выходом ~1 % энергии излучения, большей частю в виде УФ-лучей и ярчайшего светового излучения, способных повредить зрение у далёкого наблюдателя без образования ожогов кожи. Освещённость земной поверхности в эти мгновения на расстояниях до десятков километров может быть в сто и более раз больше солнечной.

Время: 1.7х10−7c. Расстояние: 21м Температура: 3 млн.°C. Пары бомбы в виде клубов, плотных сгустков и струй плазмы как поршень сжимают впереди себя воздух и формируют ударную волну внутри сферы - внутренний скачок, отличающийся от обычной ударной волны неадиабатическими, почти изотермическими свойствами и при тех же давлениях в несколько раз большей плотностью: сжимающийся скачком воздух сразу излучает большую часть энергии через пока прозрачный для излучений шар.
На первых десятках метров окружающие предметы перед налётом на них огневой сферы из-за слишком большой её скорости не успевают никак среагировать - даже практически не нагреваются, а оказавшись внутри сферы под потоком излучения испаряются мгновенно.

Температура: 2 млн.°C. Скорость 1000 км/с. С ростом сферы и падением температуры энергия и плотность потока фотонов снижаются и их пробега (порядка метра) уже не хватает для околосветовых скоростей расширения огневого фронта. Нагретый объём воздуха начал расширяться и формируется поток его частиц от центра взрыва. Тепловая волна при неподвижном воздухе на границе сферы замедляется. Расширяющийся нагретый воздух внутри сферы наталкивается на неподвижный у её границы и где-то начиная с 36-37 м появляется волна повышения плотности - будущая внешняя воздушная ударная волна; до этого волна не успевала появиться из-за огромной скорости роста световой сферы.

Время: 0,000001c. Расстояние: 34м Температура: 2 млн.°C. Внутренний скачок и пары бомбы находятся в слое 8-12 м от места взрыва, пик давления до 17 000 МПа на расстоянии 10,5 м, плотность ~ в 4 раза больше плотности воздуха, скорость ~100 км/с. Область горячего воздуха: давление на границе 2.500 МПа, внутри области до 5000 МПа, скорость частиц до 16 км/с. Вещество паров бомбы начинает отставать от внутр. скачка по мере того, как всё больше воздуха в нём вовлекается в движение. Плотные сгустки и струи сохраняют скорость.

Время: 0,000034c. Расстояние: 42м Температура: 1 млн.°C. Условия в эпицентре взрыва первой советской водородной бомбы (400кт на высоте 30 м), при котором образовалась воронка порядка 50 м диаметром и 8 м глубиной. В 15 м от эпицентра или в 5-6 м от основания башни с зарядом располагался железобетонный бункер со стенами толщиной 2 м. для размещения научной аппаратуры сверху укрытый большой насыпью земли толщиной 8 м разрушен.

Температура: 600тыс.°C.С этого момента характер ударной волны перестаёт зависеть от начальных условий ядерного взрыва и приближается к типовому для сильного взрыва в воздухе, т.е. такие параметры волны могли бы наблюдаться при взрыве большой массы обычной взрывчатки.

Время: 0,0036c. Расстояние: 60м Температура: 600тыс.°C. Внутренний скачок, пройдя всю изотермическую сферу, догоняет и сливается с внешним, повышая его плотность и образуя т. н. сильный скачок - единый фронт ударной волны. Плотность вещества в сфере падает до 1/3 атмосферной.

Время: 0,014c. Расстояние: 110м Температура: 400тыс.°C. Аналогичная ударная волна в эпицентре взрыва первой советской атомной бомбы мощностью 22 кт на высоте 30 м сгенерировала сейсмический сдвиг, разрушивший имитацию тоннелей метро с различными типами крепления на глубинах 10 и 20 м 30 м, животные в тоннелях на глубинах 10, 20 и 30 м погибли. На поверхности появилось малозаметное тарелкообразное углубление диаметром около 100 м. Сходные условия были в эпицентре взрыва "Тринити" 21 кт на высоте 30 м, образовалась воронка диаметром 80 м и глубиной 2 м.

Время: 0,004c. Расстояние: 135м
Температура: 300тыс.°C. Максимальная высота воздушного взрыва 1 Мт для образования заметной воронки в земле. Фронт ударной волны искривлён ударами сгустков паров бомбы:

Время: 0,007c. Расстояние: 190м Температура: 200тыс.°C. На гладком и как бы блестящем фронте уд. волны образуются большие волдыри и яркие пятна (сфера как бы кипит). Плотность вещества в изотермической сфере диаметром ~150 м падает ниже 10 % атмосферной.
Немассивные предметы испаряются за несколько метров до прихода огн. сферы («Канатные трюки»); тело человека со стороны взрыва успеет обуглиться, а полностью испаряется уже с приходом ударной волны.

Время: 0,01c. Расстояние: 214м Температура: 200тыс.°C. Аналогичная воздушная ударная волна первой советской атомной бомбы на расстоянии 60 м (52 м от эпицентра) разрушила оголовки стволов, ведущих в имитации тоннелей метро под эпицентром (см. выше). Каждый оголовок представлял собой мощный железобетонный каземат, укрытый небольшой грунтовой насыпью. Обломки оголовков обвалились в стволы, последние затем раздавлены сейсмической волной.

Время: 0,015c. Расстояние: 250м Температура: 170тыс.°C. Ударная волна сильно разрушает скальные породы. Скорость ударной волны выше скорости звука в металле: теоретический предел прочности входной двери в убежище; танк расплющивается и сгорает.

Время: 0,028c. Расстояние: 320м Температура: 110тыс.°C. Человек развеивается потоком плазмы (скорость ударной волны = скорости звука в костях, тело разрушается в пыль и сразу сгорает). Полное разрушение самых прочных наземных построек.

Время: 0,073c. Расстояние: 400м Температура: 80тыс.°C. Неровности на сфере пропадают. Плотность вещества падает в центре почти до 1%, а на краю изотерм. сферы диамером ~320 м до 2% атмосферной.На этом расстоянии в пределах 1,5 с нагрев до 30 000 °C и падение до 7000 °C, ~5 с удержание на уровне ~6.500 °C и снижение температуры за 10-20 с по мере ухода огненного шара вверх.

Время: 0,079c. Расстояние: 435м Температура: 110тыс.°C. Полное разрушение шоссейных дорог с асфальтовым и бетонным покрытием Температурный минимум излучения ударной волны, окончание 1-й фазы свечения. Убежище типа метро, облицованное чугунными тюбингами и монолитным железобетоном и заглублённое на 18 м, по расчёту способно выдержать без разрушения взрыв (40 кт) на высоте 30 м на минимальном расстоянии 150 м (давление ударной волны порядка 5 МПа), испытано 38 кт РДС-2 на расстоянии 235 м (давление ~1,5 МПа), получило незначительные деформации, повреждения. При температурах во фронте сжатия ниже 80тыс.°C новые молекулы NO2 больше не появляются, слой двуокиси азота постепенно исчезает и перестаёт экранировать внутреннее излучение. Ударная сфера постепенно становится прозрачной и через неё, как через затемнённое стекло, некоторое время видны клубы паров бомбы и изотермическая сфера; в целом огненная сфера похожа на фейерверк. Затем, по мере увеличения прозрачности, интенсивность излучения возрастает и детали как бы снова разгорающейся сферы становятся не видны. Процесс напоминает окончание эры рекомбинации и рождение света во Вселенной через несколько сотен тысяч лет после Большого взрыва.

Время: 0,1c. Расстояние: 530м Температура: 70тыс.°C. Отрыв и уход вперёд фронта ударной волны от границы огненной сферы, скорость роста её заметно снижается. Наступает 2-я фаза свечения, менее интенсивная, но на два порядка более длительная с выходом 99 % энергии излучения взрыва в основном в видимом и ИК спектре. На первых сотнях метров человек не успевает увидеть взрыв и погибает без мучений (время зрительной реакции человека 0,1 - 0,3 с, время реакции на ожог 0,15 - 0,2 с).

Время: 0,15c. Расстояние: 580м Температура: 65тыс.°C. Радиация ~100 000 Гр. От человека остаются обугленные осколки костей (скорость ударной волны порядка скорости звука в мягких тканях: по телу проходит разрушающий клетки и ткани гидродинамический удар).

Время: 0,25c. Расстояние: 630м Температура: 50тыс.°C. Проникающая радиация ~40 000 Гр. Человек превращается в обугленные обломки: ударная волна вызывает травматические ампутацииа подошедшая через долю сек. огненная сфера обугливает останки. Полное разрушение танка. Полное разрушение подземных кабельных линий, водопроводов, газопроводов, канализации, смотровых колодцев. Разрушение подземных ж/б труб диаметром 1,5м, с толщиной стенок 0,2м. Разрушение арочной бетонной плотины ГЭС. Сильное разрушение долговременных железобетонных фортсооружений. Незначительные повреждения подземных сооружений метро.

Время: 0,4c. Расстояние: 800м Температура: 40тыс.°C. Нагрев объектов до 3000 °C. Проникающая радиация ~20 000 Гр. Полное разрушение всех защитных сооружений гражданской обороны (убежищ) разрушение защитных устройств входов в метро. Разрушение гравитационной бетонной плотины ГЭС ДОТы становятся небоеспособны дистанции 250 м.

Время: 0,73c. Расстояние: 1200м Температура: 17тыс.°C. Радиация ~5000 Гр. При высоте взрыва 1200 м нагрев приземного воздуха в эпицентре перед приходом уд. волны до 900°C. Человек - 100 %-я гибель от действия ударной волны. Разрушение убежищ, рассчитанных на 200 кПа (тип А-III или класс 3). Полное разрушение железобетонных ДОТов сборного типа на дистанции 500 м по условиям наземного взрыва. Полное разрушение железнодорожных путей. Максимум яркости второй фазы свечения сферы к этому времени она выделила ~20 % световой энергии

Время: 1,4c. Расстояние: 1600м Температура: 12тыс.°C. Нагрев объектов до 200°C. Радиация 500 Гр. Многочисленные ожоги 3-4 степени до 60-90 % поверхности тела, тяжёлое лучевое поражение, сочетающиеся с другими травмами, летальность сразу или до 100 % в первые сутки. Танк отбрасывается ~ на 10 м и повреждается. Полное резрушение металлических и железобетонных мостов пролётом 30 - 50 м.

Время: 1,6c. Расстояние: 1750м Температура: 10тыс.°C. Радиация ок. 70 Гр. Экипаж танка погибает в течение 2-3 недель от крайне тяжёлой лучевой болезни. Полное разрушение бетонных, железобетонных монолитных (малоэтажных) и сейсмостойких зданий 0,2 МПа, убежищ встроенных и отдельностоящих, рассчитанных на 100 кПа (тип А-IV или класс 4), убежищ в подвальных помещениях многоэтажных зданий.

Время: 1,9c. Расстояние: 1900м Температура: 9тыс.°C Опасные поражения человека ударной волной и отброс до 300 м с начальной скоростью до 400 км/ч, из них 100-150 м (0,3-0,5 пути) свободный полёт, а остальное расстояние - многочисленные рикошеты о грунт. Радиация около 50 Гр - молниеносная форма лучевой болезни[, 100 % летальность в течение 6-9 суток. Разрушение встроенных убежищ, рассчитанных на 50 кПа. Сильное разрушение сейсмостойких зданий. Давление 0,12 МПа и выше - вся городская застройка плотная и разряжённая превращается в сплошные завалы (отдельные завалы сливаются в один сплошной), высота завалов может составлять 3-4 м. Огненная сфера в это время достигает максимальных размеров (D~2км), подминается снизу отражённой от земли ударной волной и начинает подъём; изотермическая сфера в ней схлопывается, образуя быстрый восходящий поток в эпицентре - будущую ножку гриба.

Время: 2,6c. Расстояние: 2200м Температура: 7,5тыс.°C. Тяжёлые поражения человека ударной волной. Радиация ~10 Гр - крайне тяжёлая острая лучевая болезнь, по сочетании травм 100 % летальность в пределах 1-2 недель. Безопасное нахождение в танке, в укреплённом подвале с усиленным ж/б перекрытием и в большинстве убежищ Г. О. Разрушение грузовых автомобилей. 0,1 МПа - расчётное давление ударной волны для проектирования конструкций и защитных устройств подземных сооружений линий мелкого заложения метрополитена.

Время: 3,8c. Расстояние: 2800м Температура: 7,5тыс.°C. Радиация 1 Гр - в мирных условиях и своевременном лечении неопасное лучевое поражение, но при сопутствующих катастрофе антисанитарии и тяжёлых физических и психологических нагрузках, отсутствии медицинской помощи, питания и нормального отдыха до половины пострадавщих погибают только от радиации и сопутствующих заболеваний, а по сумме повреждений (плюс травмы и ожоги) гораздо больше. Давление менее 0,1 МПа - городские районы с плотной застройкой превращаются в сплошные завалы. Полное разрушение подвалов без усиления конструкций 0,075 МПа. Среднее разрушение сейсмостойких зданий 0,08-0,12 МПа. Сильные повреждения железобетонных ДОТов сборного типа. Детонация пиротехнических средств.

Время: 6c. Расстояние: 3600м Температура: 4,5тыс.°C. Средние поражения человека ударной волной. Радиация ~0,05 Гр - доза неопасна. Люди и предметы оставляют «тени» на асфальте. Полное разрушение административных многоэтажных каркасных (офисных) зданий (0,05-0,06 МПа), укрытий простейшего типа; сильное и полное разрушение массивных промышленных сооружений. Практически вся городская застройка разрушена с образованием местных завалов (один дом - один завал). Полное разрушение легковых автомобилей, полное уничтожение леса. Электромагнитный импульс ~3 кВ/м поражает нечувствительные электроприборы. Разрушения аналогичны землетрясению10 бал. Сфера перешла в огненный купол, как пузырь всплывающий вверх, увлекая за собой столб из дыма и пыли с поверхности земли: растёт характерный взрывной гриб с начальной вертикальной скоростью до 500 км/час. Скорость ветра у поверхности к эпицентру ~100 км/ч.

Время: 10c. Расстояние: 6400м Температура: 2тыс.°C. Окончание эффективного времени второй фазы свечения, выделилось ~80 % суммарной энергии светового излучения. Оставшиеся 20 % неопасно высвечиваются в течение порядка минуты с непрерывным понижением интенсивности, постепенно теряясь в клубах облака. Разрушение укрытий простейшего типа (0,035-0,05 МПа). На первых километрах человек не услышит грохот взрыва из-за поражения слуха ударной волной. Отброс человека ударной волной ~20 м с начальной скоростью ~30 км/ч. Полное разрушение многоэтажных кирпичных домов, панельных домов, сильное разрушение складов, среднее разрушение каркасных административных зданий. Разрушения аналогичны землетрясению 8 баллов. Безопасно почти в любом подвале.
Свечение огненного купола перестаёт быть опасным, он превращается в огненное облако, с подъёмом растущее в объёме; раскалённые газы в облаке начинают вращаться в торообразном вихре; горячие продукты взрыва локализуются в верхней части облака. Поток запылённого воздуха в столбе движется в два раза быстрее подъёма «гриба», настигает облако, проходит сквозь, расходится и как бы наматывается на него, как на кольцеобразную катушку.

Время: 15c. Расстояние: 7500м . Лёгкие поражения человека ударной волной. Ожоги третьей степени открытых частей тела. Полное разрушение деревянных домов, сильное разрушение кирпичных многоэтажных домов 0,02-0,03МПа, среднее разрушение кирпичных складов, многоэтажных железобетонных, панельных домов; слабое разрушение административных зданий 0,02-0,03 МПа, массивных промышленных сооружений. Воспламенение автомобилей. Разрушения аналогичны землетрясению 6 бал., урагану 12 бал. до 39 м/с. «Гриб» вырос до 3 км над центром взрыва (истинная высота гриба больше на высоту взрыва боеголовки, примерно на 1,5 км), у него появляется «юбочка» из конденсата паров воды в потоке тёплого воздуха, веером затягиваемого облаком в холодные верхние слои атмосферы.

Время: 35c. Расстояние: 14км. Ожоги второй степени. Воспламеняется бумага, тёмный брезент. Зона сплошных пожаров, в районах плотной сгораемой застройки возможны огненный шторм, смерч (Хиросима, «Операция Гоморра»). Слабое разрушение панельных зданий. Вывод из строя авиатехники и ракет. Разрушения аналогичны землетрясению 4-5 баллов, шторму 9-11 балов V = 21 - 28,5м/с. «Гриб» вырос до ~5 км огненное облако светит всё слабее.

Время: 1мин. Расстояние: 22км. Ожоги первой степени - в пляжной одежде возможна гибель. Разрушение армированного остекления. Корчевание больших деревьев. Зона отдельных пожаров.«Гриб» поднялся до 7,5 км облако перестаёт излучать свет и теперь имеет красноватый оттенок из-за содержащихся в нём окислов азота, чем будет резко выделяться среди других облаков.

Время: 1,5мин. Расстояние: 35км . Максимальный радиус поражения незащищённой чувствительной электроаппаратуры электромагнитным импульсом. Разбиты почти все обычные и часть армированных стёкол в окнах- актуально морозной зимой плюс возможность порезов летящими осколками. «Гриб» поднялся до 10 км, скорость подъёма ~220 км/час. Выше тропопаузы облако развивается преимущественно в ширину.
Время: 4мин. Расстояние: 85км. Вспышка похожа на большое неестественно яркое Солнце у горизонта, может вызвать ожог сетчатки глаз, прилив тепла к лицу. Подошедшая через 4 минуты ударная волна ещё может сбить с ног человека и разбить отдельные стёкла в окнах. «Гриб» поднялся свыше 16 км, скорость подъёма ~140 км/час

Время: 8мин. Расстояние: 145км. Вспышка не видна за горизонтом, зато видно сильное зарево и огненное облако. Общая высота «гриба» до 24 км, облако 9 км в высоту и 20-30 км в диаметре, своей широкой частью оно "опирается " на тропопаузу. Грибовидное облако выросло до максимальных размеров и наблюдается ешё порядка часа или более, пока не развеется ветрами и не перемешается с обычной облачностью. Из облака в течение 10-20 часов выпадают осадки с относительно крупными частицами, формируя ближний радиоактивный след.

Время: 5,5-13 часов Расстояние: 300-500км. Дальняя граница зоны умеренного заражения (зона А). Уровень радиации на внешней границе зоны 0,08 Гр/ч; суммарная доза излучения 0,4-4 Гр.

Время: ~10 месяцев. Эффективное время половинного оседания радиоактивных веществ для нижних слоёв тропической стратосферы (до 21 км), выпадение также идёт в основном в средних широтах в том же полушарии, где произведён взрыв.

Памятник первому испытанию атомной бомбы «Тринити». Этот памятник был воздвигнут на полигоне «Уайт Сэндс» в 1965 году, через 20 лет после проведения испытания «Тринити». Мемориальная доска памятника гласит: «На этом месте 16 июля 1945 года прошло первое в мире испытание атомной бомбы». Еще одна мемориальная доска, установленная ниже, свидетельствует о том, что это место получило статус национального исторического памятника. (Photo: Wikicommons)


16 января 1963 года, в самый разгар холодной войны, Никита Хрущёв заявил миру о том, что Советский союз обладает в своём арсенале новым оружием массового поражения - водородной бомбой.
За полтора года до этого в СССР был произведён самый мощный взрыв водородной бомбы в мире - на Новой Земле был взорван заряд мощностью свыше 50 мегатонн. Во многом именно это заявление советского лидера заставило мир осознать угрозу дальнейшей эскалации гонки ядерных вооружений: уже 5 августа 1963 г. в Москве был подписан договор о запрещении испытаний ядерного оружия в атмосфере, космическом пространстве и под водой.

История создания

Теоретическая возможность получения энергии путём термоядерного синтеза была известна ещё до Второй мировой войны, но именно война и последующая гонка вооружений поставили вопрос о создании технического устройства для практического создания этой реакции. Известно, что в Германии в 1944 году велись работы по инициированию термоядерного синтеза путём сжатия ядерного топлива с использованием зарядов обычного взрывчатого вещества - но они не увенчались успехом, так как не удалось получить необходимых температур и давления. США и СССР вели разработки термоядерного оружия начиная с 40-х годов, практически одновременно испытав первые термоядерные устройства в начале 50-х. В 1952 году на атолле Эниветок США осуществили взрыв заряда мощностью 10,4 мегатонны (что в 450 раз больше мощности бомбы, сброшенной на Нагасаки), а в 1953 году в СССР было испытано устройство мощностью 400 килотонн.
Конструкции первых термоядерных устройств были плохо приспособленными для реального боевого использования. К примеру, устройство, испытанное США в 1952 году, представляло собой наземное сооружение высотой с 2-этажный дом и весом свыше 80 тонн. Жидкое термоядерное горючее хранилось в нём с помощью огромной холодильной установки. Поэтому в дальнейшем серийное производство термоядерного оружия осуществлялось с использованием твёрдого топлива - дейтерида лития-6. В 1954 году США испытали устройство на его основе на атолле Бикини, а в 1955 году на Семипалатинском полигоне была испытана новая советская термоядерная бомба. В 1957 году испытания водородной бомбы провели в Великобритании. В октябре 1961 года в СССР на Новой Земле была взорвана термоядерная бомба мощностью 58 мегатонн - самая мощная бомба из когда-либо испытанных человечеством, вошедшая в историю под названием «Царь-бомба».

Дальнейшее развитие было направлено на уменьшение размеров конструкции водородных бомб, чтобы обеспечить их доставку к цели баллистическими ракетами. Уже в 60-е годы массу устройств удалось уменьшить до нескольких сотен килограммов, а к 70-м годам баллистические ракеты могли нести свыше 10 боеголовок одновременно - это ракеты с разделяющимися головными частями, каждая из частей может поражать свою собственную цель. На сегодняшний день термоядерным арсеналом обладают США, Россия и Великобритания, испытания термоядерных зарядов были проведены также в Китае (в 1967 году) и во Франции (в 1968 году).

Принцип действия водородной бомбы

Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Именно эта реакция протекает в недрах звёзд, где под действием сверхвысоких температур и гигантского давления ядра водорода сталкиваются и сливаются в более тяжёлые ядра гелия. Во время реакции часть массы ядер водорода превращается в большое количество энергии - благодаря этому звёзды и выделяют огромное количество энергии постоянно. Учёные скопировали эту реакцию с использованием изотопов водорода - дейтерия и трития, что и дало название «водородная бомба». Изначально для производства зарядов использовались жидкие изотопы водорода, а впоследствии стал использоваться дейтерид лития-6, твёрдое вещество, соединение дейтерия и изотопа лития.

Дейтерид лития-6 является основным компонентом водородной бомбы, термоядерным горючим. В нём уже хранится дейтерий, а изотоп лития служит сырьём для образования трития. Для начала реакции термоядерного синтеза требуется создать высокие температуру и давление, а также выделить из лития-6 тритий. Эти условия обеспечивают следующим образом.


Вспышка взрыва бомбы АН602 сразу после отделения ударной волны. В это мгновение диаметр шара составлял около 5,5 км, а через несколько секунд он увеличился до 10 км.

Оболочку контейнера для термоядерного горючего делают из урана-238 и пластика, рядом с контейнером размещают обычный ядерный заряд мощностью несколько килотонн - его называют триггером, или зарядом-инициатором водородной бомбы. Во время взрыва плутониевого заряда-инициатора под действием мощного рентгеновского излучения оболочка контейнера превращается в плазму, сжимаясь в тысячи раз, что создаёт необходимое высокое давление и огромную температуру. Одновременно с этим нейтроны, испускаемые плутонием, взаимодействуют с литием-6, образуя тритий. Ядра дейтерия и трития взаимодействуют под действием сверхвысоких температуры и давления, что и приводит к термоядерному взрыву.


Световое излучение вспышки взрыва могло вызвать ожоги третьей степени на расстоянии до ста километров. Это фото сделано с расстояния в 160 км.
Если сделать несколько слоёв урана-238 и дейтерида лития-6, то каждый из них добавит свою мощность ко взрыву бомбы - т. е. такая «слойка» позволяет наращивать мощность взрыва практически неограниченно. Благодаря этому водородную бомбу можно сделать почти любой мощности, причём она будет гораздо дешевле обычной ядерной бомбы такой же мощности.


Сейсмическая волна, вызванная взрывом, обогнула земной шар трижды. Высота ядерного гриба достигла 67 километров в высоту, а диаметр его «шляпки» - 95 км. Звуковая волна достигла острова Диксон, располагающегося в 800 км от места испытаний.

Испытание водородной бомбы РДС-6С, 1953 год

Во время обустройства площадки для ядерных испытаний на Семипалатинском атомном полигоне мне пришлось 12 августа 1953 года пережить взрыв первой на земном шаре водородной бомбы мощностью 400 килотонн, взрыв возник внезапно. Земля заколыхалась под нами, как вода. Волна земной поверхности прошла и подняла нас на высоту более метра. А находились мы на удалении около 30 километров от эпицентра взрыва. Шквал воздушной волны бросил нас на землю. Прокатил по ней несколько метров, как щепки. Раздался дикий рёв. Ослепительно сверкали молнии. Они вселяли животный ужас.

Когда мы, наблюдатели этого кошмара, поднялись, над нами висел ядерный гриб. От него исходило тепло и слышался треск. Я как зачарованный смотрел в ножку гигантского гриба. Внезапно к нему подлетел самолёт и начал делать чудовищные виражи. Я подумал, что это лётчик-герой забирает пробы радиоактивного воздуха. Затем самолёт нырнул в ножку гриба и исчез... Это было удивительно и страшно.

На поле полигона действительно стояли самолёты, танки и другая техника. Но позднейшие расспросы показали, что ни один самолёт не брал пробы воздуха из ядерного гриба. Неужели это была галлюцинация? Загадка разрешилась позже. Я понял, что то был эффект печной трубы гигантских масштабов. Ни самолётов, ни танков на поле после взрыва не оказалось. Но специалисты считали, что они испарились от высокой температуры. Я считаю, что их попросту втянул в себя огненный гриб. Мои наблюдения и впечатления подтвердились и другим свидетельством.

22 ноября 1955 года был произведён ещё более мощный взрыв. Заряд водородной бомбы составлял 600 килотонн. Площадку под этот новый взрыв мы подготовили в 2,5 километра от эпицентра предыдущего ядерного взрыва. Оплавленную радиоактивную корку земли зарывали тут же в вырытые бульдозерами траншеи; готовили новую порцию техники, которая должна была сгореть в пламени водородной бомбы. Начальником строительства Семипалатинского полигона был Р. Е. Рузанов. Он оставил выразительное описание этого второго взрыва.

Жителей «Берега» (жилгородок испытателей), ныне город Курчатов, подняли в 5 часов утра. Был мороз -15°С. Всех отвели на стадион. Окна и двери в домах оставили открытыми.

В назначенный час появился гигантский самолёт в сопровождении истребителей.

Вспышка взрыва возникла неожиданно и страшно. Она была ярче Солнца. Солнце померкло. Оно исчезло. Исчезли облака. Небо стало чёрно-синим. Раздался удар страшной силы. Он дошёл до стадиона с испытателями. Стадион был в 60 километрах от эпицентра. Несмотря на это, воздушная волна повалила людей на землю и отбросила их на десятки метров к трибунам. Были повалены тысячи людей. Раздался дикий вопль этих толп. Кричали женщины и дети. Весь стадион наполнился стонами от травм и боли, которые мгновенно поразили людей. Стадион с испытателями и жителями городка утонул в пыли. Город тоже был не виден от пыли. Горизонт там, где был полигон, кипел в клубах пламени. Ножка атомного гриба тоже как бы кипела. Она двигалась. Казалось, вот-вот подойдёт к стадиону и накроет нас всех кипящее облако. Отчётливо было видно, как с земли в облако стали втягиваться и исчезать в нём танки, самолёты, части разрушенных сооружений, специально выстроенных на поле полигона Голову сверлила мысль: и нас втянет в это облако! Всеми овладели оцепенение и ужас.

Внезапно ножка ядерного гриба оторвалась от кипящего вверху облака. Облако поднялось выше, а ножка осела к земле. Только тут люди пришли в себя. Все бросились к домам. Окон и дверей, крыш, скарба в них не было. Всё было размётано вокруг. Пострадавших во время испытаний спешно собирали и отправляли в госпиталь...

Через неделю приехавшие с Семипалатинского полигона офицеры шёпотом рассказывали об этом чудовищном зрелище. О страданиях, которые перенесли люди. О летающих в воздухе танках. Сопоставив эти рассказы с моими наблюдениями, я понял, что был свидетелем явления, которое можно назвать эффектом печной трубы. Только в гигантских масштабах.

Огромные тепловые массы при водородном взрыве отрывались от поверхности земли и двигались в направлении к центру гриба. Этот эффект возник из-за чудовищных температур, которые давал ядерный взрыв. В начальной стадии взрыва температура составляла 30 тысяч градусов Цельсия В ножке ядерного гриба она была не менее 8 тысяч. Возникала огромная, чудовищная сила всасывания, втягивавшая в эпицентр взрыва любые предметы, стоявшие на полигоне. Поэтому самолёт, который я наблюдал при первом ядерном взрыве, не был галлюцинацией. Его просто втянуло в ножку гриба, и он делал там невероятные виражи...

Процесс, который я наблюдал при взрыве водородной бомбы, весьма опасен. Не только своей высокой температурой, но и понятым мной эффектом всасывания гигантских масс, будь то воздушная или водяная оболочка Земли.

Мой расчёт 1962 года показал, что если ядерный гриб пробьёт атмосферу на большую высоту, это может вызвать планетарную катастрофу. При подъеме гриба на высоту 30 километров начнётся процесс всасывания водо-воздушных масс Земли в космос. Вакуум начнёт работать как насос. Земля лишится воздушной и водной оболочек вместе с биосферой. Человечество погибнет.

Я подсчитал, что для этого апокалиптического процесса достаточно атомной бомбы всего в 2 тысячи килотонн, то есть всего в три раза больше мощности второго водородного взрыва. Это самый простой рукотворный сценарий гибели человечества.

В своё время мне запретили об этом говорить. Сегодня я считаю своим долгом сказать об угрозе человечеству прямо и открыто.

На Земле накоплены огромные запасы ядерного оружия. Работают реакторы атомных электростанций по всему миру. Они могут стать добычей террористов. Взрыв этих объектов может достигнуть мощностей больших, чем 2 тысячи килотонн. Потенциально сценарий гибели цивилизации уже уготован.

Что отсюда следует? Необходимо охранять ядерные объекты от возможного терроризма так тщательно, чтобы они оказались совершенно недоступными для него. В противном случае планетарная катастрофа неминуема.

Сергей Алексеенко

участник строительства

Семиполатинского ядерного

Термоя́дерное ору́жие (водородная бомба) - тип ядерного оружия , разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например, синтеза одного ядра атома гелия из двух ядер атомов дейтерия), при которой выделяется энергия .

Общее описание [ | ]

Термоядерное взрывное устройство может быть построено как с использованием жидкого дейтерия , так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития - дейтериду лития-6 . Это соединение тяжёлого изотопа водорода - дейтерия и изотопа лития с массовым числом 6 .

Дейтерид лития-6 - твёрдое вещество, которое позволяет хранить дейтерий (обычное состояние которого в нормальных условиях - газ) при обычных условиях, и, кроме того, второй его компонент - литий-6 - это сырьё для получения самого дефицитного изотопа водорода - трития . Собственно, 6 Li - единственный промышленный источник получения трития:

3 6 L i + 0 1 n → 1 3 H + 2 4 H e + E 1 . {\displaystyle {}_{3}^{6}\mathrm {Li} +{}_{0}^{1}n\to {}_{1}^{3}\mathrm {H} +{}_{2}^{4}\mathrm {He} +E_{1}.}

Эта же реакция происходит и в дейтериде лития-6 в термоядерном устройстве при облучении быстрыми нейтронами; выделяющаяся энергия E 1 = 4,784 МэВ . Образовавшийся тритий (3 H) далее вступает в реакцию с дейтерием, выделяя энергию E 2 = 17,59 МэВ :

1 3 H + 1 2 H → 2 4 H e + 0 1 n + E 2 , {\displaystyle {}_{1}^{3}\mathrm {H} +{}_{1}^{2}\mathrm {H} \to {}_{2}^{4}\mathrm {He} +{}_{0}^{1}n+E_{2},}

причём образуется нейтрон с кинетической энергией не менее 14,1 МэВ , который может вновь инициировать первую реакцию на ещё одном ядре лития-6, либо вызвать деление тяжёлых ядер урана или плутония в оболочке или триггере с испусканием ещё нескольких быстрых нейтронов.

В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотоп лития с массовым числом 7 . Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше: реакция n + 7 Li → 3 H + 4 He + n − 2,467 МэВ является эндотермической, поглощающей энергию.

Термоядерная бомба, действующая по принципу Теллера - Улама, состоит из двух ступеней: триггера и контейнера с термоядерным горючим.

Устройство, испытанное США в 1952 году, фактически не являлось бомбой, а представляло собой лабораторный образец, «3-этажный дом, наполненный жидким дейтерием», выполненный в виде специальной конструкции. Советские же учёные разработали именно бомбу - законченное устройство, пригодное к практическому военному применению .

Самая крупная когда-либо взорванная водородная бомба - советская 58-мегатонная «царь-бомба », взорванная 30 октября 1961 года на полигоне архипелага Новая Земля. Никита Хрущёв впоследствии публично пошутил, что первоначально предполагалось взорвать 100-мегатонную бомбу, но заряд уменьшили, «чтобы не побить все стёкла в Москве». Конструктивно бомба действительно была рассчитана на 100 мегатонн и этой мощности можно было добиться заменой свинцового на урановый . Бомба была взорвана на высоте 4000 метров над полигоном «Новая Земля». Ударная волна после взрыва три раза обогнула земной шар. Несмотря на успешное испытание, бомба на вооружение не поступила ; тем не менее, создание и испытание сверхбомбы имели большое политическое значение, продемонстрировав, что СССР решил задачу достижения практически любого уровня мегатоннажа ядерного арсенала.

США [ | ]

Идея бомбы с термоядерным синтезом, инициируемым атомным зарядом, была предложена Энрико Ферми его коллеге Эдварду Теллеру осенью 1941 года , в самом начале Манхэттенского проекта . Значительную часть своей работы в ходе Манхэттенского проекта Теллер посвятил работе над проектом бомбы синтеза, в некоторой степени пренебрегая собственно атомной бомбой. Его ориентация на трудности и позиция «адвоката дьявола» в обсуждениях проблем заставили Оппенгеймера увести Теллера и других «проблемных» физиков на запасной путь.

Первые важные и концептуальные шаги к осуществлению проекта синтеза сделал сотрудник Теллера Станислав Улам . Для инициирования термоядерного синтеза Улам предложил сжимать термоядерное топливо до начала его нагрева, используя для этого факторы первичной реакции расщепления, а также разместить термоядерный заряд отдельно от первичного ядерного компонента бомбы. Эти предложения позволили перевести разработку термоядерного оружия в практическую плоскость. Исходя из этого, Теллер предположил, что рентгеновское и гамма-излучение, порождённые первичным взрывом, могут передать достаточно энергии во вторичный компонент, расположенный в общей оболочке с первичным, чтобы осуществить достаточную имплозию (обжатие) и инициировать термоядерную реакцию. Позднее Теллер, его сторонники и противники обсуждали вклад Улама в теорию, лежащую в основе этого механизма.

Взрыв «Джордж»

В 1951 году была проведена серия испытаний под общим наименованием Операция «Парник» (англ. Operation Greenhouse ), в ходе которой отрабатывались вопросы миниатюризации ядерных зарядов при увеличении их мощности. Одним из испытаний в этой серии стал взрыв под кодовым наименованием «Джордж» (англ. George ), в котором было взорвано экспериментальное устройство, представлявшее собой ядерный заряд в виде тора с небольшим количеством жидкого водорода, помещённым в центре. Основная часть мощности взрыва была получена именно за счёт водородного синтеза, что подтвердило на практике общую концепцию двухступенчатых устройств.

«Иви Майк»

Вскоре развитие термоядерного оружия в Соединённых Штатах было направлено в сторону миниатюризации конструкции Теллер-Улама, которой можно было бы оснастить межконтинентальные баллистические ракеты (МБР/ICBM) и баллистические ракеты подводных лодок (БРПЛ/SLBM). К 1960 году на вооружение были приняты боеголовки мегатонного класса W47, развёрнутые на подводных лодках, оснащённых баллистическими ракетами Поларис . Боеголовки имели массу 320 кг и диаметр 50 см. Более поздние испытания показали низкую надёжность боеголовок, установленных на ракеты Поларис, и необходимость их доработок. К середине 1970-х годов миниатюризация новых версий боеголовок по схеме Теллера-Улама позволила размещать 10 и более боеголовок в габаритах боевой части ракет с разделяющимися головными частями (РГЧ/MIRV).

СССР [ | ]

Северная Корея [ | ]

В декабре года ЦТАК распространило заявление руководителя КНДР Ким Чен Ына, в котором он сообщает о наличии у Пхеньяна собственной водородной бомбы

60 лет назад, 1 марта 1954 года, США произвели взрыв водородной бомбы на атолле Бикини. Мощность этого взрыва была эквивалентна взрыву тысячи бомб, которые были сброшены на японские города Хиросиму и Нагасаки. Это было самое мощное испытание из когда-либо произведённых в Соединенных Штатах. Расчётная мощность бомбы была равна 15 мегатоннам. В дальнейшем в США повышение взрывной силы таких бомб признали нецелесообразным.

В результате испытания в атмосферу попало около 100 млн. тонн заражённого грунта. Пострадали и люди. Американские военные не стали откладывать испытание, зная, что ветер дует в сторону обитаемых островов и, что могут пострадать рыбаки. Островитян и рыбаков даже не предупредили об испытаниях и возможной опасности.

Так, японское рыболовное судно «Счастливый дракон» («Фукурю-Мару»), которое находилось в 140 км от эпицентра взрыва, подверглось облучению, 23 человека пострадали (в дальнейшем 12 из них умерло). По данным японского министерства здравоохранения, в результате испытания «Кастл Браво» заражению различной степени подверглось более 800 японских рыболовных судов. На них находилось около 20 тыс. человек. Серьёзные дозы облучения получили жители атоллов Ронгелап и Аилингинаэ. Пострадали и некоторые американские военные.

Мировая общественность высказала свою обеспокоенность по поводу мощной ударной войны и радиоактивных осадков. Несколько выдающихся ученых, включая Бертрана Рассела, Альберта Эйнштейна, Фредерика Жолио-Кюри, выступили с протестом. В 1957 году в канадском местечке Пагуош прошла первая конференция научного движения, целью которого был запрет ядерных испытаний, снижение опасности возникновения вооруженных конфликтов и совместный поиск решения глобальных проблем (Пагуошское движение).

Из истории создания водородной бомбы в США

Идея бомбы с термоядерным синтезом, инициируемым атомным зарядом, была высказано ещё в 1941 году. В мае 1941 года учёный-физик Токутаро Хагивара из университета в Киото в Японии высказал мысль о возможности возбуждения термоядерной реакции между ядрами водорода с помощью взрывной цепной реакции деления ядер урана-235. Аналогичную идею, в сентябре 1941 года в Колумбийском университете высказал выдающийся итальянский физик Энрико Ферми. Он её изложил своему коллеге американскому физику Эдварду Теллеру. Затем Ферми и Теллер высказали мысль о возможности инициирования ядерным взрывом термоядерных реакций в среде из дейтерия. Теллер загорелся этой идеей и в ходе реализации Манхэттенского проекта большую часть своего времени посвятил работе по созданию термоядерной бомбы.

Надо сказать, что был настоящим учёным-«милитаристом», который выступал за обеспечение преимущества США в области ядерных вооружений. Учёный был против запрещения ядерных испытаний в трех средах, предлагал проводить новые работы по созданию более дешевых и эффективных видов атомного . Выступал за развертывание вооружений в космосе.

Группа блестящих учёных США и Европы, которая работала в Лос-Аламосской лаборатории, в ходе работы по созданию ядерного оружия, затрагивала и проблемы дейтериевой сверхбомбы. К концу 1945 года была создана относительная целостная концепция «классического супера». Считалось, что потоком нейтронов, выходящих из первичной атомной бомбы на основе урана-235, можно вызвать детонацию в цилиндре с жидким дейтерием (через промежуточную камеру с DT-смесью). Эмиль Конопинский предложил добавить к дейтерию тритий для уменьшения температуры зажигания. В 1946 году Клаус Фукс при участии Джона Фон-Неймана предложил использовать новую систему инициирования. Она включала в себя дополнительный вторичный узел из жидкой DT-смеси, которая зажигалась в результате излучения первичной атомной бомбы.

Сотрудник Теллера польский математик Станислав Улам высказал предложения, которые позволили перевести разработку термоядерной бомбы в практическую плоскость. Так, он для инициирования термоядерного синтеза предложил сжимать термоядерное топливо до начала его нагрева, использовав для этого первичную реакцию расщепления и разместив термоядерный заряд отдельно от первичного ядерного компонента. Исходя из этих расчётов, Теллер предположил, что рентгеновское и гамма излучение, вызванное первичным взрывом, сможет передать достаточно энергии во вторичный компонент, позволит инициировать термоядерную реакцию.

В январе 1950 года американский президент Гарри Трумен заявил о том, что США будут вести работу над всеми видами атомного оружия, включая водородную бомбу («сверхбомбу»). Было принято решение провести в 1951 году первые полигонные испытания с термоядерными реакциями. Так, планировали испытать «усиленную» атомную бомбу «Пункт», а также модель «классического супера» с бинарным инициирующим отсеком. Это испытание получило название «Джордж» (само устройство назвали «Цилиндр»). В ходе подготовки испытания «Джорж» был использован классический принцип конструирования термоядерного устройства, где удерживается и используется энергия первичной атомной бомбы для сжатия и инициирования второго компонента с термоядерным горючим.

9 мая 1951 года испытание «Джордж» было проведено. На Земле вспыхнуло первое маленькое термоядерное пламя. В 1952 году началось строительство завода по производству лития-6. В 1953 году производство было запущено.

В сентябре 1951 года в Лос-Аламосе приняли решение о разработке термоядерного устройства «Майк». 1 ноября 1952 год испытание термоядерного взрывного устройства было проведено на атолле Эниветок. Мощность взрыва оценили в 10-12 мегатонн тротилового эквивалента. В качестве топлива для термоядерного синтеза использовали жидкий дейтерий. Идея двухступенчатого устройства с конфигурацией Теллера-Улама себя оправдала. Устройство состояло из обычного ядерного заряда и криогенной ёмкости со смесью жидких дейтерия и трития. «Свечой зажигания» для термоядерной реакции были плутониевый стержень, который располагался по центру криогенной ёмкости. Испытание было успешным.

Однако была проблема – сверхбомба была сконструирована в нетранспортабельном варианте. Общая масса конструкции составляла более 70 тонн. Её нельзя было использовать во время войны. Главной задачей стало создание транспортабельного термоядерного оружия. Для этого необходимо было накопить достаточное количество лития-6. Достаточное количество накопили к весне 1954 года.

1 марта 1954 года американцы провели новое термоядерное испытание «Кастл Браво» на атолле Бикини. В качестве термоядерного горючего применили дейтерид лития. Это был двухступенчатый заряд: инициирующий атомный заряд и термоядерное горючее. Испытание признали успешным. Хотя и ошиблись в мощности взрыва. Он был намного мощнее, чем предполагали.

Дальнейшие испытания позволили усовершенствовать термоядерный заряд. 21 мая 1956 года произвели первый сброс бомбы с летательного аппарата. Масса заряда была сокращена, что позволило уменьшить бомбу. Уже к 1960 году США смогли создать боеголовки мегатонного класса, которые развернули на атомных подводных лодках.